
Methodology  Author  Analysis  Approach/apparatus 

Experimental 
Arvidson and Scull [111]  Young’s modulus, proportional limit, and yield strength  A concentric, overlappingcylinder, capacitance extensometer is used to measure the strain 
Gronauer et al. [112]  Young’s modulus  Sound velocity measurements 
Woignier and Phalippou [113]  Young’s modulus, fracture strength, and toughness  Threepoint flexural and threepoint bending 
Gross et al. [114]  Young’s modulus and Poisson’s ratio  Ultrasonic and static compression 
Scherer et al. [115]  Bulk modulus  Mercury porosimetry 
Parmenter and Milstein [89]  Hardness, compression, tension and shear on unreinforced and fiberreinforced aerogels  Vickers and Knoop hardness test, fourpoint bending, and a displacementcontrolled Instron 1123 testing machine 
Stark et al. [116]  Young’s modulus  Atomic force microscopy 
MonerGirona et al. [117]  Hardness, Young’s modulus, and elastic parameter  Microindentation measurements using a Nanotest 550 Indenter 
Martin et al. [118]  Young’s Modulus  Uniaxial compression and acoustic velocity 
Perin et al. [119]  Elastic modulus and internal friction  Isostatic compression 
Miner et al. [120]  Young’s modulus and nonrecoverable strain for hygroscopic silica aerogel  Lowrange compression tester 
Despetis et al. [121]  Subcritical growth domain in hydrophilic silica aerogel  Doublecleavagedrilledcompression test (DCDC) 
Takahashi et al. [122]  Bending strength  Threepoint bending 

Numerical  Yang et al. [123]  Creep behavior of ceramic fiberreinforced silica aerogel  Scanning electron microscope 
Hasmy et al. [124]  Wavevectordependent scattered intensity  Cubic DLCA fractal structure model 
Rahmani et al. [125]  Densities of states and dynamic structure factors  3D cubic DLCA fractal structure model 
Yang et al. [123]  Creep behavior of ceramic fiberreinforced silica aerogel  Powerlaw creep model 
