About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 409572, 14 pages
http://dx.doi.org/10.1155/2013/409572
Research Article

Structural and Morphological Characterization of Micro and Nanofibers Produced by Electrospinning and Solution Blow Spinning: A Comparative Study

1Departamento de Engenharia de Materiais (DEMA), Universidade Federal de São Carlos (UFSCAR), Rodovia Washington Luis, KM 235, Monjolinho, 13.565-905 São Carlos, SP, Brazil
2Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA), Embrapa Instrumentação Agropecuária (CNPDIA), Rua XV de Novembro, 1452 Centro, 13.560-970 São Carlos, SP, Brazil
3United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Bioproduct Chemistry and Engineering (BCE), 800 Buchanan Street, Albany, CA 94710, USA
4Universidade Federal da Paraíba (UFPB), Departamento de Engenharia de Materiais (DEMAT), Cidade Universitária, 58.051-900 João Pessoa, PB, Brazil

Received 24 February 2013; Accepted 8 April 2013

Academic Editor: Pavel Lejcek

Copyright © 2013 Juliano E. Oliveira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Nonwoven mats of poly(lactic acid) (PLA), poly(ethylene oxide) (PEO), and poly(ε-caprolactone) (PCL) were prepared at a nano- and submicron scale by solution blow spinning (SBS) and electrospinning in order to compare crystalline structure and morphology developed by both processes during fiber formation. Polymer solutions were characterized by rheometry and tensiometry. Spun fibers were characterized by several analytical steps. SEM analyses showed that both solution blow spun and electrospun fibers had similar morphology. Absence of residual solvents and characteristic infrared bands in the solution blow spun fibers for PLA, PCL, and PEO was confirmed by FTIR studies. XRD diffraction patterns for solution blow spun and electrospun mats revealed some differences related to distinct mechanisms of fiber formation developed by each process. Significant differences in thermal behavior by DSC were observed between cast films of PLA, PCL, and PEO and their corresponding spun nanofibers. Furthermore, the average contact angles for spun PLA and PCL were higher than for electrospun mats, whereas it was slightly lower for PEO. When comparing electrospun and solution blow spun fibers, it was possible to verify that fiber morphology and physical properties depended both on the spinning technique and type of polymer.