About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 409572, 14 pages
http://dx.doi.org/10.1155/2013/409572
Research Article

Structural and Morphological Characterization of Micro and Nanofibers Produced by Electrospinning and Solution Blow Spinning: A Comparative Study

1Departamento de Engenharia de Materiais (DEMA), Universidade Federal de São Carlos (UFSCAR), Rodovia Washington Luis, KM 235, Monjolinho, 13.565-905 São Carlos, SP, Brazil
2Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA), Embrapa Instrumentação Agropecuária (CNPDIA), Rua XV de Novembro, 1452 Centro, 13.560-970 São Carlos, SP, Brazil
3United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Bioproduct Chemistry and Engineering (BCE), 800 Buchanan Street, Albany, CA 94710, USA
4Universidade Federal da Paraíba (UFPB), Departamento de Engenharia de Materiais (DEMAT), Cidade Universitária, 58.051-900 João Pessoa, PB, Brazil

Received 24 February 2013; Accepted 8 April 2013

Academic Editor: Pavel Lejcek

Copyright © 2013 Juliano E. Oliveira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Bognitzki, W. Czado, T. Frese, et al., “Nanostructured fibers via electrospinning,” Advanced Materials, vol. 13, no. 1, p. 70, 2001.
  2. C. J. Ellison, A. Phatak, D. W. Giles, C. W. Macosko, and F. S. Bates, “Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup,” Polymer, vol. 48, no. 11, pp. 3306–3316, 2007.
  3. R. S. Rao and R. L. Shambaugh, “Vibration and stability in the melt blowing process,” Industrial & Engineering Chemistry Research, vol. 32, no. 12, pp. 3100–3111, 1993.
  4. R. L. Shambaugh, “A macroscopic view of the melt-blowing process for producing microfibers,” Industrial & Engineering Chemistry Research, vol. 27, no. 12, pp. 2363–2372, 1988.
  5. P. J. Barham and A. Keller, “High-strength polyethylene fibres from solution and gel spinning,” Journal of Materials Science, vol. 20, no. 7, pp. 2281–2302, 1985. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, “The effect of processing variables on the morphology of electrospun nanofibers and textiles,” Polymer, vol. 42, no. 1, pp. 261–272, 2001. View at Scopus
  7. J. Doshi and D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” Journal of Electrostatics, vol. 35, no. 2-3, pp. 151–160, 1995.
  8. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Composites Science and Technology, vol. 63, no. 15, pp. 2223–2253, 2003.
  9. S. A. Theron, E. Zussman, and A. L. Yarin, “Experimental investigation of the governing parameters in the electrospinning of polymer solutions,” Polymer, vol. 45, no. 6, pp. 2017–2030, 2004.
  10. M. C. Branciforti, T. A. Custodio, L. M. Guerrini, L. Averous, and R. E. S. Bretas, “Characterization of nano-structured poly(D,L-lactic acid) nonwoven mats obtained from different solutions by electrospinning,” Journal of Macromolecular Science B, vol. 48, no. 6, pp. 1222–1240, 2009.
  11. W. K. Son, J. H. Youk, T. S. Lee, and W. H. Park, “The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers,” Polymer, vol. 45, no. 9, pp. 2959–2966, 2004.
  12. J. Zeng, X. S. Chen, Q. Z. Liang, X. L. Xu, and X. B. Jing, “Enzymatic degradation of poly(L-lactide) and poly (epsilon-caprolactone) electrospun fibers,” Macromolecular Bioscience, vol. 4, no. 12, pp. 1118–1125, 2004.
  13. Q. P. Pham, U. Sharma, and A. G. Mikos, “Electrospinning of polymeric nanofibers for tissue engineering applications: a review,” Tissue Engineering, vol. 12, no. 5, pp. 1197–1211, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. E. S. Medeiros, G. M. Glenn, A. P. Klamczynski, W. J. Orts, and L. H. C. Mattoso, “Solution blow spinning: a new method to produce micro- and nanofibers from polymer solutions,” Journal of Applied Polymer Science, vol. 113, no. 4, pp. 2322–2330, 2009.
  15. J. E. Oliveira, V. Zucolotto, L. H. C. Mattoso, and E. S. Medeiros, “Multi-walled carbon nanotubes and poly(lactic acid) nanocomposite fibrous membranes prepared by solution blow spinning,” Journal of Nanoscience and Nanotechnology, vol. 1, no. 1, 2011.
  16. S. Sinha-Ray, A. L. Yarin, and B. Pourdeyhimi, “The production of 100/400 nm inner/outer diameter carbon tubes by solution blowing and carbonization of core-shell nanofibers,” Carbon, vol. 48, no. 12, pp. 3575–3578, 2010.
  17. J. E. Oliveira, E. A. Moraes, R. G. F. Costa, et al., “Nano and submicrometric fibers of poly(D,L-lactide) obtained by solution blow spinning: process and solution variables,” Journal of Applied Polymer Science, vol. 122, no. 5, pp. 3396–3405, 2011.
  18. E. S. Medeiros, G. M. Glenn, A. P. Klamczynski, W. J. Orts, and L. H. C. Mattoso, “Solution blow spinning: a new method to produce micro- and nanofibers from polymer solutions,” Journal of Applied Polymer Science, vol. 113, no. 4, pp. 2322–2330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. D. W. Choi, K. G. Marra, and P. N. Kumta, “Chemical synthesis of hydroxyapatite/poly(epsilon-caprolactone) composites,” Materials Research Bulletin, vol. 39, no. 3, pp. 417–432, 2004.
  20. P. Huang, J. X. Zheng, S. W. Leng, et al., “Poly(ethylene oxide) crystal orientation changes in an inverse hexagonal cylindrical phase morphology constructed by a poly(ethylene oxide)-block-polystyrene diblock copolymer,” Macromolecules, vol. 40, no. 3, pp. 526–534, 2007.
  21. M. Khayet and M. C. Garcia-Payo, “X-Ray diffraction study of polyethersulfone polymer, flat-sheet and hollow fibers prepared from the same under different gas-gaps,” Desalination, vol. 245, no. 1–3, pp. 494–500, 2009.
  22. C. Marega, A. Marigo, V. Dinoto, R. Zannetti, A. Martorana, and G. Paganetto, “Structure and crystallization kinetics of poly(L-Lactic Acid),” Makromolekulare Chemie-Macromolecular Chemistry and Physics, vol. 193, no. 7, pp. 1599–1606, 1992.
  23. S. L. Shenoy, W. D. Bates, H. L. Frisch, and G. E. Wnek, “Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit,” Polymer, vol. 46, no. 10, pp. 3372–3384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. J. H. Yu, S. V. Fridrikh, and G. C. Rutledge, “The role of elasticity in the formation of electrospun fibers,” Polymer, vol. 47, no. 13, pp. 4789–4797, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Pattamaprom, W. Hongrojjanawiwat, P. Koombhongse, P. Supaphol, T. Jarusuwannapoo, and R. Rangkupan, “The influence of solvent properties and functionality on the electrospinnability of polystyrene nanofibers,” Macromolecular Materials and Engineering, vol. 291, no. 7, pp. 840–847, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Sinha-Ray, A. L. Yarin, and B. Pourdeyhimi, “Meltblowing: I-basic physical mechanisms and threadline model,” Journal of Applied Physics, vol. 108, no. 3, Article ID 034912, 12 pages, 2010. View at Publisher · View at Google Scholar
  27. A. L. Yarin, S. Sinha-Ray, and B. Pourdeyhimi, “Meltblowing: multiple polymer jets and fiber-size distribution and lay-down patterns,” Polymer, vol. 52, no. 13, pp. 2929–2938, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. A. L. Yarin, S. Sinha-Ray, and B. Pourdeyhimi, “Meltblowing: II-linear and nonlinear waves on viscoelastic polymer jets,” Journal of Applied Physics, vol. 108, no. 3, Article ID 034913, 10 pages, 2010. View at Publisher · View at Google Scholar
  29. G. Kister, G. Cassanas, and M. Vert, “Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s,” Polymer, vol. 39, no. 2, pp. 267–273, 1998. View at Scopus
  30. J. Zhang, H. Tsuji, I. Noda, and Y. Ozaki, “Structural changes and crystallization dynamics of poly(L-lactide) during the cold-crystallization process investigated by infrared and two-dimensional infrared correlation spectroscopy,” Macromolecules, vol. 37, no. 17, pp. 6433–6439, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. A. C. Angood and J. L. Koenig, “Infrared studies of chain folding in polyethylene oxide,” Journal of Applied Physics, vol. 39, no. 11, p. 4985, 1968. View at Publisher · View at Google Scholar
  32. T. Miyazawa, Y. Ideguchi, K. Fukushima, et al., “Molecular vibrations and structure of high polymers .3. Polarized infrared spectra, normal vibrations, and helical conformation of polyethylene glycol,” Journal of Chemical Physics, vol. 37, no. 12, p. 2764, 1962.
  33. W. H. T. Davison, “Infrared spectra and crystallinity.3. Poly(Ethylene Glycol),” Journal of the Chemical Society, p. 3270, 1955.
  34. I. Rey, J. C. Lassègues, J. Grondin, and L. Servant, “Infrared and Raman study of the PEO-LiTFSI polymer electrolyte,” Electrochimica Acta, vol. 43, no. 10-11, pp. 1505–1510, 1998. View at Scopus
  35. M. M. Coleman and J. Zarian, “Fourier-transform infrared studies of polymer blends-2. Poly(Epsilon-Caprolactone)-Poly(Vinyl Chloride) system,” Journal of Polymer Science Polymer Physics Edition, vol. 17, no. 5, pp. 837–850, 1979. View at Scopus
  36. Y. He and Y. Inoue, “Novel FTIR method for determining the crystallinity of poly(ε-caprolactone),” Polymer International, vol. 49, no. 6, pp. 623–626, 2000. View at Scopus
  37. J. Ren, W. Liu, J. Zhu, and S. Gu, “Preparation and characterization of electrospun, biodegradable membranes,” Journal of Applied Polymer Science, vol. 109, no. 5, pp. 3390–3397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. W. Hoogsteen, A. R. Postema, A. J. Pennings, G. Ten Brinke, and P. Zugenmaier, “Crystal structure, conformation, and morphology of solution-spun poly(L-lactide) fibers,” Macromolecules, vol. 23, no. 2, pp. 634–642, 1990. View at Scopus
  39. H. J. Zhou, T. B. Green, and Y. L. Joo, “The thermal effects on electrospinning of polylactic acid melts,” Polymer, vol. 47, pp. 7497–7505, 2006.
  40. K. H. Lee, H. Y. Kim, M. S. Khil, Y. M. Ra, and D. R. Lee, “Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning,” Polymer, vol. 44, no. 4, pp. 1287–1294, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Carrizales, S. Pelfrey, R. Rincon et al., “Thermal and mechanical properties of electrospun PMMA, PVC, Nylon 6, and Nylon 6,6,” Polymers for Advanced Technologies, vol. 19, no. 2, pp. 124–130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. J. S. Kim and D. S. Lee, “Thermal properties of electrospun polyesters,” Polymer Journal, vol. 32, no. 7, pp. 616–618, 2000.
  43. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer, vol. 43, no. 16, pp. 4403–4412, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Zeng, X. Chen, X. Xu et al., “Ultrafine fibers electrospun from biodegradable polymers,” Journal of Applied Polymer Science, vol. 89, no. 4, pp. 1085–1092, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. K. A. Athanasiou, G. G. Niederauer, and C. M. Agrawal, “Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers,” Biomaterials, vol. 17, no. 2, pp. 93–102, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Chen, C. N. Lee, and S. H. Teoh, “Nanofibrous modification on ultra-thin poly(epsilon-caprolactone) membrane via electrospinning,” Materials Science & Engineering C, vol. 27, no. 2, pp. 325–332, 2007.
  47. W. R. Gombotz, W. Guanghui, T. A. Horbett, and A. S. Hoffman, “Protein adsorption to poly(Ethylene Oxide) surfaces,” Journal of Biomedical Materials Research, vol. 25, no. 12, pp. 1547–1562, 1991.
  48. K. Kim, M. Yu, X. H. Zong, et al., “Control of degradation rate and hydrophilicity in electrospun non-woven poly(D,L-lactide) nanofiber scaffolds for biomedical applications,” Biomaterials, vol. 24, no. 27, pp. 4977–4985, 2003.
  49. M. Ma, Y. Mao, M. Gupta, K. K. Gleason, and G. C. Rutledge, “Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition,” Macromolecules, vol. 38, no. 23, pp. 9742–9748, 2005. View at Publisher · View at Google Scholar · View at Scopus