About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 415359, 9 pages
http://dx.doi.org/10.1155/2013/415359
Review Article

A Review of Structural Performance of Oil Palm Empty Fruit Bunch Fiber in Polymer Composites

Civil Engineering Faculty, Universiti Teknologi Malaysia, P.O. Box 81310, Skudai, Johor Bahru, Malaysia

Received 4 September 2012; Revised 13 December 2012; Accepted 19 December 2012

Academic Editor: Markku Leskela

Copyright © 2013 Reza Mahjoub et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Huang, V. Birman, A. Nanni, and G. Tunis, “Properties and potential for application of steel reinforced polymer and steel reinforced grout composites,” Composites B, vol. 36, no. 1, pp. 73–82, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Pecce, F. Ceroni, A. Prota, and G. Manfredi, “Response prediction of RC beams externally bonded with steel-reinforced polymers,” Journal of Composites for Construction, vol. 10, no. 3, pp. 195–203, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. F. Wu, J. H. Yan, Y. W. Zhou, and Y. Xiao, “Ultimate strength of reinforced concrete beams retrofitted with hybrid bonded fiber-reinforced polymer,” ACI Structural Journal, vol. 107, no. 4, pp. 451–460, 2010. View at Scopus
  4. J. Li, S. L. Bakoss, B. Samali, and L. Ye, “Reinforcement of concrete beam-column connections with hybrid FRP sheet,” Composite Structures, vol. 47, no. 1–4, pp. 805–812, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. L. C. Hollaway, “A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties,” Construction and Building Materials, vol. 24, no. 12, pp. 2419–2445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Jawaid, H. P. S. A. Khalil, and A. A. Bakar, “Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites,” Materials Science and Engineering A, vol. 527, no. 29-30, pp. 7944–7949, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Pervaiz and M. M. Sain, “Carbon storage potential in natural fiber composites,” Resources, Conservation and Recycling, vol. 39, no. 4, pp. 325–340, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. de Farias, M. Z. Farina, A. P. T. Pezzin, and D. A. K. Silva, “Unsaturated polyester composites reinforced with fiber and powder of peach palm: mechanical characterization and water absorption profile,” Materials Science and Engineering C, vol. 29, no. 2, pp. 510–513, 2003. View at Scopus
  9. G. Cicala, G. Cristaldi, G. Recca, G. Ziegmann, A. El-Sabbagh, and M. Dickert, “Properties and performances of various hybrid glass/natural fibre composites for curved pipes,” Materials and Design, vol. 30, no. 7, pp. 2538–2542, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Shinoj, R. Visvanathan, S. Panigrahi, and N. Varadharaju, “Dynamic mechanical properties of oil palm fibre (OPF)-linear low density polyethylene (LLDPE) biocomposites and study of fibre-matrix interactions,” Biosystems Engineering, vol. 109, no. 2, pp. 99–107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. S. Sreekala, M. G. Kumaran, and S. Thomas, “Oil palm fibers: morphology, chemical composition, surface modification, and mechanical properties,” Journal of Applied Polymer Science, vol. 66, no. 5, pp. 821–835, 1997. View at Scopus
  12. M. Zuhri, M. Yusoff, S. M. Sapuan, N. Ismail, and R. Wirawan, “Mechanical properties of short random oil palm fibre reinforced epoxy composites,” Sains Malaysiana, vol. 39, no. 1, pp. 87–92, 2010. View at Scopus
  13. M. Khalid, C. T. Ratnam, T. G. Chuah, S. Ali, and S. Y. C. Thomas, “Comparative study of polypropylene composites reinforced with oil palm empty fruit bunch fiber and oil palm derived cellulose,” Materials and Design, vol. 29, no. 1, pp. 173–178, 2008. View at Scopus
  14. C. Varga, N. Miskolczi, L. Bartha, and G. Lipóczi, “Improving the mechanical properties of glass-fibre-reinforced polyester composites by modification of fibre surface,” Materials and Design, vol. 31, no. 1, pp. 185–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. S. Sreekala, J. George, M. G. Kumaran, and S. Thomas, “The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres,” Composites Science and Technology, vol. 62, no. 3, pp. 339–353, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Karina, H. Onggo, A. H. D. Abdullah, and A. Syampurwadi, “Effect of oil palm empty fruit bunch fiber on the physical and mechanical properties of fiber glass reinforced polyester resin,” Journal of Biological Sciences, vol. 8, no. 1, pp. 101–106, 2008. View at Scopus
  17. K. M. M. Rao and K. M. Rao, “Extraction and tensile properties of natural fibers: vakka, date and bamboo,” Composite Structures, vol. 77, no. 3, pp. 288–295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Kalam, B. B. Sahari, Y. A. Khalid, and S. V. Wong, “Fatigue behaviour of oil palm fruit bunch fibre/epoxy and carbon fibre/ epoxy composites,” Composite Structures, vol. 71, no. 1, pp. 34–44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Jawaid, H. P. S. A. Khalil, and A. A. Bakar, “Woven hybrid composites: tensile and flexural properties of oil palm-woven jute fibres based epoxy composites,” Materials Science and Engineering A, vol. 528, no. 15, pp. 5190–5195, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. L. S. Chin, Characterization of natural fiber polymer composites for structural application [dissertation], Universiti Teknologi Malaysia, Johor Bahru, Malaysia, 2008.
  21. S. Joseph, P. A. Sreekumar, J. M. Kenny, D. Puglia, S. Thomas, and K. Joseph, “Oil palm microcomposites: processing and mechanical behavior,” Polymer Engineering and Science, vol. 50, no. 9, pp. 1853–1863, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Joseph, S. P. Appukuttan, J. M. Kenny, and D. Puglia, “Dynamic mechanical properties of oil palm microfibril-reinforced natural rubber composites,” Journal of Applied Polymer Science, vol. 117, no. 3, pp. 1298–1308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. H. D. Rozman, G. S. Tay, R. N. Kumar, A. Abusamah, H. Ismail, and I. Z. A. Mohd, “Polypropylene-oil palm empty fruit bunch-glass fibre hybrid composites: a preliminary study on the flexural and tensile properties,” European Polymer Journal, vol. 37, no. 6, pp. 1283–1291, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. A. S. Virk, W. Hall, and J. Summerscales, “Failure strain as the key design criterion for fracture of natural fibre composites,” Composites Science and Technology, vol. 70, no. 6, pp. 995–999, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. H. V. S. GangaRao, N. Taly, and P. V. Vijay, Reinforced Concrete Design with FRP Composites, Taylor & Francis Group, Boca Raton, Fla, USA.
  26. X. Li, L. G. Tabil, and S. Panigrahi, “Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review,” Journal of Polymers and the Environment, vol. 15, no. 1, pp. 25–33, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Alawar, A. M. Hamed, and K. Al-Kaabi, “Characterization of treated date palm tree fiber as composite reinforcement,” Composites B, vol. 40, no. 7, pp. 601–606, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Mishra, A. K. Mohanty, L. T. Drzal et al., “Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites,” Composites Science and Technology, vol. 63, no. 10, pp. 1377–1385, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. C. A. S. Hill and H. P. S. A. Khalil, “Effect of fiber treatments on mechanical properties of coir or oil palm fiber reinforced polyester composites,” Journal of Applied Polymer Science, vol. 78, pp. 1685–1697, 2000.
  30. S. Zakaria and L. K. Poh, “Polystyrene-benzoylated EFB reinforced composites,” Polymer, vol. 41, no. 5, pp. 951–962, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Agarwal, N. S. Saxena, K. B. Sharma, S. Thomas, and M. S. Sreekala, “Temperature dependence of effective thermal conductivity and thermal diffusivity of treated and untreated polymer composites,” Journal of Applied Polymer Science, vol. 89, no. 6, pp. 1708–1714, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. A. A. Bakar and N. Baharulrazi, “Mechanical properties of benzoylated oil palm empty fruit bunch short fiber reinforced poly(vinyl chloride) composites,” Polymer, vol. 47, no. 10, pp. 1072–1079, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. A. A. Bakar, A. Hassan, and A. F. M. Yusof, “The effect of oil extraction of the oil palm empty fruit bunch on the processability, impact, and flexural properties of PVC-U composites,” International Journal of Polymeric Materials, vol. 55, no. 9, pp. 627–641, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Shinoj, R. Visvanathan, S. Panigrahi, and M. Kochubabu, “Oil palm fiber (OPF) and its composites: a review,” Industrial Crops and Products, vol. 33, no. 1, pp. 7–22, 2011. View at Publisher · View at Google Scholar · View at Scopus