About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 457186, 6 pages
http://dx.doi.org/10.1155/2013/457186
Research Article

The Effect of Operational Cutting Parameters on Nitinol-60 in Wire Electrodischarge Machining

1Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2Department of Mechanical Engineering, Majlesi Branch, Islamic Azad University, Isfahan 86316-56451, Iran

Received 12 January 2013; Accepted 31 January 2013

Academic Editor: S. Miyazaki

Copyright © 2013 Ali Akbar LotfiNeyestanak and Saeed Daneshmand. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. E. Hodgson, M. H. Wu, and R. J. Biermann, “Shape memory alloys,” in Metals Handbook, vol. 2, pp. 897–890, 10th edition, 1990.
  2. M. W. M. van der Wijst, Shape Memory Alloys Featuring Nitinol, TU Eindhoven Faculteit der Werktuigbouwkunde Vakgroep WFW, Veldhoven, The Netherlands, 1992.
  3. E. Hornbogen, V. Mertinger, and D. Wurzel, “Microstructure and tensile properties of two binary NiTi-alloys,” Scripta Materialia, vol. 44, no. 1, pp. 171–178, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. A. A. Khamei and K. Dehghani, “A study on the mechanical behavior and microstructural evolution of Ni60 wt%-Ti40 wt% (60Nitinol) intermetallic compound during hot deformation,” Materials Chemistry and Physics, vol. 123, no. 1, pp. 269–277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. C. DellaCorte, S. V. Pepper, R. Noebe, D. R. Hull, and G. Glennon, Intermetallic Nickel-Titanium Alloys for Oil-Lubricated Bearing Applications, NASA/TM-2009-215646, 2009.
  6. C. DellaCorte, “Nickel-Titanium alloys: corrosion proof alloys for space bearing components and mechanism applications,” in Proceedings of the 40th Aerospace Mechanisms Symposium, NASA Kennedy Space Center, May 2010.
  7. C. Greiner, S. M. Oppenheimer, and D. C. Dunand, “High strength, low stiffness, porous NiTi with superelastic properties,” Acta Biomaterialia, vol. 1, no. 6, pp. 705–716, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Yuan, C. Y. Chung, and M. Zhu, “Microstructure and martensitic transformation behavior of porous NiTi shape memory alloy prepared by hot isostatic pressing processing,” Materials Science and Engineering A, vol. 382, no. 1-2, pp. 181–187, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. A. Lotfi, S. Daneshmand, and S. Adib Nazari, “The effect of operational cutting parameters in the wire electro discharge machining (WEDM) on micro hardness of alloy surface layer,” Journal of Advanced Design and Manufacturing Technology, vol. 2, no. 4, pp. 51–58, 2009.
  10. S. Kuriakose and M. S. Shunmugam, “Characteristics of wire-electro discharge machined Ti6Al4V surface,” Materials Letters, vol. 58, no. 17-18, pp. 2231–2237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Weinert and V. Petzoldt, “Machining of NiTi based shape memory alloys,” Materials Science and Engineering A, vol. 378, no. 1-2, pp. 180–184, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. H. C. Lin, K. M. Lin, and Y. C. Chen, “Study on the machining characteristics of TiNi shape memory alloys,” Journal of Materials Processing Technology, vol. 105, no. 3, pp. 327–332, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Theisen and A. Schuermann, “Electro discharge machining of nickel-titanium shape memory alloys,” Materials Science and Engineering A, vol. 378, no. 1-2, pp. 200–204, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. S. L. Chen, S. F. Hsieh, H. C. Lin, M. H. Lin, and J. S. Huang, “Electrical discharge machining of a NiAlFe ternary shape memory alloy,” Journal of Alloys and Compounds, vol. 464, no. 1-2, pp. 446–451, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. A. Mc Geough, Advanced Methods of Machining, Springer, Chapman & Hall, London, UK, 1988.
  16. E. C. Jameson, “Description and development of electrical discharge machining,” in Electrical Discharge Machining, p. 16, SME, Dearborn, Mich, USA, 2001.
  17. K. H. Ho, S. T. Newman, S. Rahimifard, and R. D. Allen, “State of the art in wire electrical discharge machining (WEDM),” International Journal of Machine Tools and Manufacture, vol. 44, no. 12-13, pp. 1247–1259, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Sommer and S. Sommer, Free-Complete EDM Handbook, Advance Pub, 2005.
  19. J. R. Davis, Metals Handbook Machining, vol. 16, ASM International, Novelty, Ohio, USA, 9th edition, 1989.
  20. N. Tosun, C. Cogun, and H. Pihtili, “The effect of cutting parameters on wire crater sizes in wire EDM,” International Journal of Advanced Manufacturing Technology, vol. 21, no. 10-11, pp. 857–865, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. G. H. Dehghan and A. A. LotfiNeyestanak, Comparative Morphological Studies of Spark Eroded Surfaces on WEDM and SEDM, TICME, Tehran, Iran, 2005.
  22. ASTM Standard, Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants, Specification F2063-00, 2000.
  23. Y. Suzuki, K. Otsukaand, and C. M. Wayman, Fabrication of Shape Memory Alloys, Cambridge University Press, 1998.
  24. C. L. Chu, C. Y. Chung, P. H. Lin, and S. D. Wang, “Fabrication and properties of porous NiTi shape memory alloys for heavy load-bearing medical applications,” Journal of Materials Processing Technology, vol. 169, no. 1, pp. 103–107, 2005. View at Publisher · View at Google Scholar · View at Scopus