- About this Journal ·
- Abstracting and Indexing ·
- Aims and Scope ·
- Annual Issues ·
- Article Processing Charges ·
- Articles in Press ·
- Author Guidelines ·
- Bibliographic Information ·
- Citations to this Journal ·
- Contact Information ·
- Editorial Board ·
- Editorial Workflow ·
- Free eTOC Alerts ·
- Publication Ethics ·
- Reviewers Acknowledgment ·
- Submit a Manuscript ·
- Subscription Information ·
- Table of Contents

Advances in Materials Science and Engineering

Volume 2013 (2013), Article ID 502702, 6 pages

http://dx.doi.org/10.1155/2013/502702

## High Pressure Elastic Behavior of Synthetic **Mg**_{3}Y_{2}(SiO_{4})_{3} Garnet up to 9 GPa

^{1}Laboratory for High Temperature and High Pressure Study of the Earth’s Interior of Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China^{2}Key Laboratory of Computational Geodynamics of Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100049, China^{3}University of Chinese Academy of Sciences, Beijing 100049, China^{4}Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA

Received 5 July 2013; Accepted 14 August 2013

Academic Editor: Pavel Strunz

Copyright © 2013 Dawei Fan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Abstract

The compression behavior of synthetic magnesium- (Mg-) yttrium (Y) garnet Mg_{3}Y_{2}(SiO_{4})_{3} has been investigated upto about 8.79 GPa at 300 K using *in situ* angle-dispersive X-ray diffraction and a diamond anvil cell at the beamline X17C, National Synchrotron Light Source, Brookhaven National Laboratory. No phase transition has been observed within the pressure range investigated. The unit-cell parameters and volume decreased systematically with increasing pressure, and a reliable isothermal bulk modulus () and its pressure derivative () were obtained in this study. The values of zero-pressure volume , , and refined with a third-order Birch-Murnaghan equation of state are Å^{3}, GPa, and . If is fixed at 4, is obtained as GPa.

#### 1. Introduction

Garnets are an important constituent of the upper mantle and mantle transition zone of the Earth and play a fundamental role in high pressure and high temperature petrogenetic processes [1, 2]. Garnets are also important components of subducted oceanic crust, and it is suggested that garnet-rich subducted crust can be gravitationally trapped in the lowermost part of the mantle transition zone [3–6]. Therefore, accurate knowledge of the physical properties of garnets is essential to infer appropriate compositional models for the upper mantle and mantle transition zone of the Earth. In addition, garnet is the major host of the rare-earth element (REE) both in metamorphic rocks and mantle rocks, and the latter may undergo partial melting in the mantle [7]. Thus, there is a considerable interest in the study of the thermodynamic behavior of REE in garnet that could help to understand the evolution of REE patterns in magmas and in the residual solids [7–9], especially garnets in igneous and metamorphic rocks.

Garnets have the general formula X_{3}Y_{2}(SiO_{4})_{3}, centered cubic lattice (space group *Ia–3d*), and display 8-fold dodecahedral (X), 6-fold octahedral (Y), and tetrahedral (Si) crystallographic sites. This unique behavior makes the garnet structure flexible in accommodating various chemical substitutions with different ionic radii, suggesting that garnets could be composition diverse where X = Mg^{2+}, Fe^{2+}, Ca^{2+}, Mn^{2+}, Y^{3+}; Y = Al^{3+}, Fe^{3+}, Cr^{3+}, and Y^{3+}. Chemical substitutions at octahedral and triangular dodecahedral sites may change the relative bond lengths/interatomic distances and angles, which will result in affecting their elastic properties [6].

Yttrium is a silvery-metallic transition metal chemically similar to the lanthanides, and it has often been classified as a “rare earth element”. Yttrium is almost always found combined with the lanthanides in rare-earth minerals [10, 11]. It is used in the production of a large variety of synthetic garnets [12], and yttria is used to make yttrium iron garnets (Y_{3}Fe_{5}O_{12}, YIG), which are very effective microwave filters. YIG is also very efficient as an acoustic energy transmitter and transducer [13]. Yttrium aluminium garnet (Y_{3}Al_{5}O_{12}, YAG) is used in a number of industrial applications, either in the pure phase form or as a composite [14].

To date, the elastic properties of pyrope have been studied extensively by multianvil apparatus and diamond anvil cell [6, 15–22]. However, nowadays, there are no studies available on the elastic behavior of rare-earth silicate garnet at high pressure. In addition, yttrium not only can substitute for Mg at the dodecahedral site but also can substitute for Al at the octahedral site in the silicate garnet. In this paper, we report the elastic measurements of magnesium- (Mg-) yttrium (Y) garnet [Mg_{3}Y_{2}(SiO_{4})_{3}], a synthetic rare-earth silicate garnet, up to pressures of 8.79 GPa at room temperature. Along with the previous results for pyrope [6, 15–22], the compositional dependence of the bulk modulus is discussed.

#### 2. Sample and Experiment

The Mg_{3}Y_{2}(SiO_{4})_{3} sample used in our high pressure powder X-ray diffraction experiments was synthesized with a multianvil pressure apparatus (YJ-3000T) installed at the Institute of Geochemistry, Chinese Academy of Sciences. Details about the apparatus have been described by Xie et al. [23]. The pressurization system of this press consists of six WC anvils, with their tips truncated as mm^{2}, which are simultaneously pushed by six hydraulic rams so that high pressure is generated in the experimental assembly. The experimental assembly, YJ-3000T, used in this study, is schematically illustrated in Figure 1. The experimental temperature was measured and controlled with a Pt_{94}Rh_{6}-Pt_{70}Rh_{30} thermocouple (type B). The starting materials used in the synthesizing experiments were stoichiometric amounts of high purity MgCO_{3}, Y_{2}O_{3}, and SiO_{2} and were placed one night at 800°C for removing carbonates. The mixture was then melted at 1400°C which produced, after quenching, a homogeneous glass. The homogeneous glass was crushed into a fine powder using acetone. The starting mixtures were encapsulated in platinum capsules. The synthesizing pressure and temperature conditions were 4 GPa and 1000°C for 24 h. The crystal structure of sample was confirmed by using powder X-ray diffraction method (X’Pert Pro MPD system). Their compositions were confirmed by using electron microprobe analysis (EPMA-1600).

In this investigation, we conducted *in situ* high-pressure angle dispersive X-ray diffraction experiments at the beamline X17C, National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, using a 0.37677 Å X-ray beam and CCD detector, and the beamline 4W2, Beijing Synchrotron Radiation Facility (BSRF), using a 0.6199 Å X-ray beam and Mar345 detector. We generated the high pressure by using a symmetrical diamond-anvil cell, equipped with two diamonds anvils (culet face diameter: 500 *μ*m) and tungsten-carbide supports. In these high pressure experiments, T301 stainless steel plates with an initial thickness of 200 *μ*m were used as gaskets, with their central part preindented to a thickness of about 50 *μ*m and then drilled through into a hole of 200 *μ*m diameter. The finely ground Mg_{3}Y_{2}(SiO_{4})_{3} powder, plus a couple of tiny ruby balls together with a methanol : ethanol : water mixture (16 : 3 : 1 by volume) which is a hydrostatic pressure-transmitting medium up to about 10 GPa [24], was loaded into the gasket hole. The ruby fluorescence method [25] was employed to determine the experimental pressure. The X-ray diffraction patterns (collecting time = 10 min) were integrated to generate the conventional one-dimensional profiles using the Fit2D program [26]. The sample was equilibrated for about 10 min before diffraction data measurement, and subsequently the pressure was raised up to 8.79 GPa. Unit-cell parameters were refined by Le Bail fitting using the GSAS package [27, 28] and user interface EXPGUI [29] up to 8.79 GPa (Table 2). Background was fitted using the Chebyschev polynomial, and X-ray peak shapes were fitted using the pseudo-Voigt profile function proposed by Thomson et al. [30].

#### 3. Result and Discussion

The powder X-ray diffraction data of Mg_{3}Y_{2}(SiO_{4})_{3} at ambient conditions revealed that this phase has a cubic structure (*Ia–3d*), with unit-cell dimensions of Å. The observed and calculated X-ray diffraction patterns of Mg_{3}Y_{2}(SiO_{4})_{3} at ambient conditions are listed in Table 1. The volume of Mg_{3}Y_{2}(SiO_{4})_{3} unit cell at ambient conditions is Å^{3}.

The high pressure X-ray diffraction data were collected up to 8.79 GPa at ambient temperature. Typical X-ray diffraction spectrums at selected pressure is shown in Figure 2. The diffraction patterns at each pressure of the study are similar to one another up to 8.79 GPa, with Bragg peaks shifted to higher than . No phase transition occurs within the pressure range investigated. Previous experiments have shown that some of the rare-earth garnets become amorphous at high pressure and room temperature, Gd_{3}Ga_{5}O_{12}, Gd_{3}Sc_{2}Ga_{3}O_{12}, and Y_{3}Fe_{5}O_{12} become amorphous at 84, 58, and 50 GPa, [31] respectively, whereas Mg_{3}Y_{2}(SiO_{4})_{3} in this study remains crystalline cubic up to 9 GPa. In addition, the garnets may transfer to perovskite phase at high pressure and high temperature [32]. And for the rare-earth garnets, the amorphous-to-perovskite phase transition requires a very high pressure (~80 GPa) and high temperature (~2000 K) [32, 33]. So, laser heating combined with diamond anvil cell is needed in the amorphous-to-perovskite phase transition study of Mg_{3}Y_{2}(SiO_{4})_{3} for further research.

The effect of pressure on the unit-cell parameters and volume of Mg_{3}Y_{2}(SiO_{4})_{3} are shown in Table 2. The pressure-volume data have been fitted to the third-order Birch-Murnaghan equation of state (III-BM-EoS) [34] to determine the elastic parameters
where , , , and are the zero-pressure volume, high-pressure volume, isothermal bulk modulus, and its pressure derivative, respectively. The results from a least-squares fitting using an EosFit program [35] are Å^{3}, GPa, and , respectively. When is set as 4, the isothermal bulk modulus is determined as GPa. The unit-cell volume data as a function of pressure and the compression curve calculated from these fitted parameters are plotted in Figure 3.

To assess the quality of the Birch-Murnaghan equation of state fit obtained from the plot of unit-cell volume against pressure, the relationship between the Eulerian strain ( and the normalized pressure ( was plotted [35], and it is shown in Figure 4. The - plot provides a visual indication of which higher order terms, such as , are significant in the equation of state. The Mg_{3}Y_{2}(SiO_{4})_{3} data showed a relatively large positive slope (Figure 4). This indicates that the pressure derivative of the bulk modulus () was larger than 4. Therefore, the value, estimated to be 8.5(9), was consistent with the - plot analysis.

Table 3 and Figure 3 show a comparison of this study and the previous studies for pyrope at room temperature. So far, the elasticity of pyrope has been studied intensively [6, 15–22], and various reports on of pyrope converge to GPa. The value of 145(3) GPa obtained in this study for Mg_{3}Y_{2}(SiO_{4})_{3} is about 15% smaller than the values of pyrope. However, the parameters and are usually strongly correlated in an EoSfit [36], so we cannot just compare the bulk modulus and neglect its pressure derivative. Therefore, we compared the results of this study with Hazen et al. and Zou et al. by fixing to 4.0. From Table 3, we can find that the bulk moduli of Hazen et al*.* [20] and Zou et al. [6] by fixing to 4.0 are 174(3) and 171(1) GPa, respectively. The value of 158(2) GPa obtained in this study for Mg_{3}Y_{2}(SiO_{4})_{3} by fixing to 4.0 is still about 10% smaller than the values of pyrope by fixing to 4.0. There are two possible sources for of this study for Mg_{3}Y_{2}(SiO_{4})_{3} smaller than the results of pyrope for Mg_{3}Al_{2}(SiO_{4})_{3}. First, the ionic radius of Al and Y is increasing [Al^{3+} (0.51 Å) < Y^{3+} (0.89 Å)]. Fan et al. [37] studied the grossular-andradite solid solution using high pressure X-ray diffraction and showed the bulk modulus of grossular-andradite solid solution decreases with the increasing andradite content. They considered that the ionic radii of Al^{3+} (0.51 Å) smaller than those of Fe^{3+} (0.64 Å) had a significant influence on bulk modulus of grossular-andradite solid solution. In addition, Liu et al. [38] also suggested that the differences in the elastic behavior of lead fluorapatite and calcium apatites were attributed to the different ionic sizes of Pb^{2+} (1.19 Å) and Ca^{2+} (1.00 Å). Second, we consider that the electronegativity number may be another factor for this situation (1.61 for Al compared with 1.22 for Y). Electronegativity is a chemical property that describes the ability of an atom to attract electrons [39, 40]. An atom’s electronegativity is affected by its atomic weight and the distance of its valence electrons from the charged nucleus [39, 41]. The higher the associated electronegativity number is, the greater an element or compound attracts electrons [41]. The electronegativity is larger, the attraction for bonding electron is stronger, and the electron density between cation and anion is greater, resulting in the fact that crystals have greater compressed resisted capacity [42, 43]. The ionic radius and electronegativity may be having a significant influence on bulk modulus [41, 44]. The smaller of ionic radius and larger electronegativity, the stronger of attraction for bonding electron, the greater of electron density between cation and anion, resulting in crystals have greater compressed resisted capacity [41, 44]. Therefore, we infer that the ionic radius and electronegativity is the main reason for the bulk moduli of this study smaller than the values of pyrope.

#### 4. Conclusion

The measurements on a synthetic Mg_{3}Y_{2}(SiO_{4})_{3} at pressures up to 8.79 GPa were carried out using angle-dispersive X-ray diffraction technique. No phase transition has been observed within the pressure range investigated. The equation of state for the Mg_{3}Y_{2}(SiO_{4})_{3}, fitted using the third-order Birch-Murnaghan equation of state, gives Å^{3}, GPa, and . The value of the bulk modulus in this study for Mg_{3}Y_{2}(SiO_{4})_{3} is smaller than that of pyrope reported previously, which can be attributed to the different ionic radii and electronegativity.

#### Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant nos. 41374107, 41004035, and 41274105) and the Western Doctor Special Fund of the West Light Foundation of the Chinese Academy of Sciences (2011, to Fan Dawei). Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-98CH10886. The 4W2 High Pressure Station, Beijing Synchrotron Radiation Facility (BSRF), is supported by the Chinese Academy of Sciences (Grant nos. KJCX2-SW-N20, KJCX2-SW-N03).

#### References

- T. Irifune and A. E. Ringwood, “Phase transformations in a harzburgite composition to 26 GPa: implications for dynamical behaviour of the subducting slab,”
*Earth and Planetary Science Letters*, vol. 86, no. 2–4, pp. 365–376, 1987. View at Google Scholar · View at Scopus - A. Pavese, D. Levy, and V. Pischedda, “Elastic properties of andradite and grossular, by synchrotron X-ray diffraction at high pressure conditions,”
*European Journal of Mineralogy*, vol. 13, no. 5, pp. 929–937, 2001. View at Publisher · View at Google Scholar · View at Scopus - T. Irifune and A. E. Ringwood, “Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle,”
*Earth and Planetary Science Letters*, vol. 117, no. 1-2, pp. 101–110, 1993. View at Google Scholar · View at Scopus - S.-I. Karato, Z. Wang, B. Liu, and K. Fujino, “Plastic deformation of garnets: systematics and implications for the rheology of the mantle transition zone,”
*Earth and Planetary Science Letters*, vol. 130, no. 1–4, pp. 13–30, 1995. View at Publisher · View at Google Scholar · View at Scopus - S. Gréaux, Y. Kono, N. Nishiyama, T. Kunimoto, K. Wada, and T. Irifune, “P-V-T equation of state of Ca
_{3}Al_{2}Si_{3}O_{12}grossular garnet,”*Physics and Chemistry of Minerals*, vol. 38, no. 2, pp. 85–94, 2011. View at Publisher · View at Google Scholar · View at Scopus - Y. T. Zou, S. Greaux, T. Irifune, M. L. Whitaker, T. Shinmei, and Y. Higo, “Thermal equation of state of Mg
_{3}Al_{2}Si_{3}O_{12}pyrope garnet up to 19 GPa and 1700 K,”*Physics and Chemistry of Minerals*, vol. 39, no. 7, pp. 589–598, 2012. View at Google Scholar - M. Tirone, J. Ganguly, R. Dohmen, F. Langenhorst, R. Hervig, and H.-W. Becker, “Rare earth diffusion kinetics in garnet: experimental studies and applications,”
*Geochimica et Cosmochimica Acta*, vol. 69, no. 9, pp. 2385–2398, 2005. View at Publisher · View at Google Scholar · View at Scopus - M. Tirone,
*Diffusion of rare earth elements in garnet and pyroxene: experiment, theory and applications [Ph.D. thesis]*, University of Arizona, 2002. - D. D. Hickmott, “Rare earth element zoning in pyrope-rich garnet from mantle xenoliths,”
*Annual Report of the Director of the Geo-Physical Laboratory*, vol. 1988-1989, pp. 6–10, 1989. View at Google Scholar - P. Roychowdhury, N. K. Roy, D. K. Das, and A. K. Das, “Determination of rare-earth elements and yttrium in silicate rocks by sequential inductively-coupled plasma emission spectrometry,”
*Talanta*, vol. 36, no. 12, pp. 1183–1186, 1989. View at Google Scholar · View at Scopus - N. Planavsky, A. Bekker, O. J. Rouxel et al., “Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: new perspectives on the significance and mechanisms of deposition,”
*Geochimica et Cosmochimica Acta*, vol. 74, no. 22, pp. 6387–6405, 2010. View at Publisher · View at Google Scholar · View at Scopus - H. W. Jaffe, “The role of yttrium and other minor elements in the garnet group,”
*American Mineralogist*, vol. 36, pp. 133–155, 1951. View at Google Scholar - S. Hosseini Vajargah, H. R. Madaah Hosseini, and Z. A. Nemati, “Preparation and characterization of yttrium iron garnet (YIG) nanocrystalline powders by auto-combustion of nitrate-citrate gel,”
*Journal of Alloys and Compounds*, vol. 430, no. 1-2, pp. 339–343, 2007. View at Publisher · View at Google Scholar · View at Scopus - X. Z. Guo, P. S. Devi, B. G. Ravi, J. B. Parise, S. Sampath, and J. C. Hanson, “Phase evolution of yttrium aluminium garnet (YAG) in a citrate-nitrate gel combustion process,”
*Journal of Materials Chemistry*, vol. 14, no. 8, pp. 1288–1292, 2004. View at Publisher · View at Google Scholar · View at Scopus - Y. Sato, M. Akaogi, and S. Akimoto, “Hydrostatic compression of the synthetic garnets pyrope and almandine,”
*Journal of Geophysical Research*, vol. 83, no. 1, pp. 335–338, 1978. View at Google Scholar - R. M. Hazen and L. W. Finger, “Crystal structures and compressibilities of pyrope and grossular to 60 kbar,”
*American Mineralogist*, vol. 63, no. 3-4, pp. 297–303, 1978. View at Google Scholar - L. Levien, C. T. Prewitt, and D. J. Weidner, “Compression of pyrope,”
*American Mineralogist*, vol. 64, no. 7-8, pp. 805–808, 1979. View at Google Scholar - J. M. Leger, A. M. Redon, and C. Chateau, “Compressions of synthetic pyrope, spessartine and uvarovite garnets up to 25 GPa,”
*Physics and Chemistry of Minerals*, vol. 17, no. 2, pp. 161–167, 1990. View at Publisher · View at Google Scholar · View at Scopus - R. M. Hazen and L. W. Finger, “High-pressure crystal chemistry of andradite and pyrope: revised procedures for high-pressure diffraction experiments,”
*American Mineralogist*, vol. 74, no. 3-4, pp. 352–359, 1989. View at Google Scholar · View at Scopus - R. M. Hazen, R. T. Downs, P. G. Conrad, L. W. Finger, and T. Gasparik, “Comparative compressibilities of majorite-type garnets,”
*Physics & Chemistry of Minerals*, vol. 21, no. 5, pp. 344–349, 1994. View at Google Scholar · View at Scopus - Y. Wang, D. J. Weidner, J. Zhang, G. D. Gwanrnesia, and R. C. Liebermann, “Thermal equation of state of garnets along the pyrope-majorite join,”
*Physics of the Earth and Planetary Interiors*, vol. 105, no. 1-2, pp. 59–71, 1998. View at Google Scholar · View at Scopus - L. Zhang, H. Ahsbahs, and A. Kutoglu, “Hydrostatic compression and crystal structure of pyrope to 33 GPa,”
*Physics and Chemistry of Minerals*, vol. 25, no. 4, pp. 301–307, 1998. View at Google Scholar · View at Scopus - H.-S. Xie, Y.-M. Zhang, H.-G. Xu, W. Hou, J. Guo, and H.-R. Zhao, “A new method of measurement for elastic wave velocities in minerals and rocks at high temperature and high pressure and its significance,”
*Science in China B*, vol. 36, no. 10, pp. 1276–1280, 1993. View at Google Scholar · View at Scopus - R. J. Angel, M. Bujak, J. Zhao, G. D. Gatta, and S. D. Jacobsen, “Effective hydrostatic limits of pressure media for high-pressure crystallographic studies,”
*Journal of Applied Crystallography*, vol. 40, no. 1, pp. 26–32, 2007. View at Publisher · View at Google Scholar · View at Scopus - H. K. Mao, P. M. Bell, J. W. Shaner, and D. J. Steinberg, “Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar,”
*Journal of Applied Physics*, vol. 49, no. 6, pp. 3276–3283, 1978. View at Publisher · View at Google Scholar · View at Scopus - J. Hammersley,
*Fit2D Report*, European Synchrotron Radiation Facility, Grenoble, France, 1996. - A. C. Larson and R. B. von Dreele, “General Structure Analysis System (GSAS) operation manual,”
*Report*, Los Alamos National Laboratory, 2000. View at Google Scholar - A. Le Bail, H. Duroy, and J. L. Fourquet, “Ab-initio structure determination of LiSbWO
_{6}by X-ray powder diffraction,”*Materials Research Bulletin*, vol. 23, no. 3, pp. 447–452, 1988. View at Google Scholar · View at Scopus - B. H. Toby, “EXPGUI, a graphical user interface for GSAS,”
*Journal of Applied Crystallography*, vol. 34, no. 2, pp. 210–213, 2001. View at Publisher · View at Google Scholar · View at Scopus - P. Thomson, D. E. Cox, and J. B. Hastings, “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al
_{2}O_{3},”*Journal of Applied Crystallography*, vol. 20, no. 2, pp. 79–83, 1987. View at Google Scholar - H. Hua, S. Mirov, and Y. K. Vohra, “High-pressure and high-temperature studies on oxide garnets,”
*Physical Review B*, vol. 54, no. 9, pp. 6200–6209, 1996. View at Google Scholar · View at Scopus - C. L. Lin, J. Liu, J. F. Lin, et al., “Garnet-to-Perovskite transition in Gd
_{3}Sc_{2}Ga_{3}O_{12}at high pressure and high temperature,”*Inorganic Chemistry*, vol. 52, no. 1, pp. 431–434, 2013. View at Google Scholar - Z. Mao, S. M. Dorfman, S. R. Shieh et al., “Equation of state of a high-pressure phase of Gd
_{3}Ga_{5}O_{12},”*Physical Review B*, vol. 83, no. 5, Article ID 054114, 2011. View at Publisher · View at Google Scholar · View at Scopus - F. Birch, “Finite elastic strain of cubic crystals,”
*Physical Review*, vol. 71, no. 11, pp. 809–824, 1947. View at Publisher · View at Google Scholar · View at Scopus - R. J. Angel, “Equation of state,”
*Reviews in Mineralogy and Geochemistry*, vol. 41, no. 1, pp. 35–60, 2001. View at Google Scholar - K. K. M. Lee, B. O'Neill, W. R. Panero, S.-H. Shim, L. R. Benedetti, and R. Jeanloz, “Equations of state of the high-pressure phases of a natural peridotite and implications for the Earth's lower mantle,”
*Earth and Planetary Science Letters*, vol. 223, no. 3-4, pp. 381–393, 2004. View at Publisher · View at Google Scholar · View at Scopus - D.-W. Fan, S.-Y. Wei, J. Liu, Y.-C. Li, and H.-S. Xie, “High pressure X-ray diffraction study of a grossular-andradite solid solution and the bulk modulus variation along this solid solution,”
*Chinese Physics Letters*, vol. 28, no. 7, Article ID 076101, 2011. View at Publisher · View at Google Scholar · View at Scopus - X. Liu, S. R. Shieh, M. E. Fleet, and A. Akhmetov, “High-pressure study on lead fluorapatite,”
*American Mineralogist*, vol. 93, no. 10, pp. 1581–1584, 2008. View at Publisher · View at Google Scholar · View at Scopus - L. C. Allen, “Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms,”
*Journal of the American Chemical Society*, vol. 111, no. 25, pp. 9003–9014, 1989. View at Google Scholar · View at Scopus - R. P. Iczkowski and J. L. Margrave, “Electronegativity,”
*Journal of the American Chemical Society*, vol. 83, no. 17, pp. 3547–3551, 1961. View at Google Scholar · View at Scopus - J. Zhang, “Room-temperature compressibilities of MnO and CdO: further examination of the role of cation type in bulk modulus systematics,”
*Physics and Chemistry of Minerals*, vol. 26, no. 8, pp. 644–648, 1999. View at Publisher · View at Google Scholar · View at Scopus - C. Li, Y. L. Chin, and P. Wu, “Correlation between bulk modulus of ternary intermetallic compounds and atomic properties of their constituent elements,”
*Intermetallics*, vol. 12, no. 1, pp. 103–109, 2004. View at Publisher · View at Google Scholar · View at Scopus - C. Li and P. Wu, “Correlation of bulk modulus and the constituent element properties of binary intermetallic compounds,”
*Chemistry of Materials*, vol. 13, no. 12, pp. 4642–4648, 2001. View at Publisher · View at Google Scholar · View at Scopus - D. Fan, W. Zhou, C. Liu et al., “Thermal equation of state of natural chromium spinel up to 26.8 GPa and 628 K,”
*Journal of Materials Science*, vol. 43, no. 16, pp. 5546–5550, 2008. View at Publisher · View at Google Scholar · View at Scopus