About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 574738, 10 pages
http://dx.doi.org/10.1155/2013/574738
Research Article

The Effect of Annealing on the Structural and Optical Properties of Titanium Dioxide Films Deposited by Electron Beam Assisted PVD

1Electrical Engineering Department, College of Engineering & Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
2Kuwait University Nanotechnology Research Facility, College of Engineering & Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
3Kuwait University Semiconductor Research Facility, College of Engineering & Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

Received 8 December 2012; Revised 1 April 2013; Accepted 2 April 2013

Academic Editor: Pavel Lejcek

Copyright © 2013 Yaser M. Abdulraheem et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Reyes-Coronado, G. Rodríguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. De Coss, and G. Oskam, “Phase-pure TiO2 nanoparticles: anatase, brookite and rutile,” Nanotechnology, vol. 19, no. 14, Article ID 145605, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. U. Diebold, “The surface science of titanium dioxide,” Surface Science Reports, vol. 48, no. 5–8, pp. 53–229, 2003. View at Publisher · View at Google Scholar
  3. H. K. Jang, S. W. Whangbo, H. B. Kim et al., “Titanium oxide films on Si(100) deposited by electron-beam evaporation at 250C,” Journal of Vacuum Science & Technology A, vol. 18, no. 3, article 917, 5 pages, 2000. View at Publisher · View at Google Scholar
  4. T. S. Yang, C. B. Shiu, and M. S. Wong, “Structure and hydrophilicity of titanium oxide films prepared by electron beam evaporation,” Surface Science, vol. 548, no. 1–3, pp. 75–82, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. C. L. Tien, “Biaxial stresses, surface roughness and microstructure in evaporated TiO2 films with different deposition geometries,” Applied Surface Science, vol. 256, no. 3, pp. 870–875, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. B. S. Richards, “Single-material TiO2 double-layer antireflection coatings,” Solar Energy Materials and Solar Cells, vol. 79, no. 3, pp. 369–390, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Vallejo, M. Gonzalez-Mañas, J. Martínez-López, F. Morales, and M. A. Caballero, “Characterization of TiO2 deposited on textured silicon wafers by atmospheric pressure chemical vapour deposition,” Solar Energy Materials and Solar Cells, vol. 86, no. 3, pp. 299–308, 2005. View at Publisher · View at Google Scholar
  8. M. C. Talló and K. R. Mclntosh, “Permeability of TiO2 antireflection coatings to damp heat,” in Proceedings of the 24th European Photovoltaic Solar Energy Conference (PVSEC '09), vol. 2037, pp. 2037–2040, 2009.
  9. E. György, G. Socol, E. Axente, I. N. Mihailescu, C. Ducu, and S. Ciuca, “Anatase phase TiO2 thin films obtained by pulsed laser deposition for gas sensing applications,” Applied Surface Science, vol. 247, no. 1–4, pp. 429–433, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. F. Wang, Y. F. Hsu, and Y. S. Lee, “Microstructural evolution and optical properties of doped TiO2 films prepared by RF magnetron sputtering,” Ceramics International, vol. 32, no. 2, pp. 121–125, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Heinrichs, T. Jarmar, U. Wiklund, and H. Engqvist, “Physical vapour deposition and bioactivity of crystalline titanium dioxide thin films,” Trends in Biomaterials and Artificial Organs, vol. 22, no. 2, pp. 100–106, 2008. View at Scopus
  12. K. A. Vorotilov, E. V. Orlova, and V. I. Petrovsky, “Sol-gel TiO2 films on silicon substrates,” Thin Solid Films, vol. 207, no. 1-2, pp. 180–184, 1992. View at Scopus
  13. G. San Vicente, A. Morales, and M. T. Gutiérrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon,” Thin Solid Films, vol. 391, no. 1, pp. 133–137, 2001. View at Publisher · View at Google Scholar
  14. Z. Wang, U. Helmersson, and P. O. Käll, “Optical properties of anatase TiO2 thin films prepared by aqueous sol-gel process at low temperature,” Thin Solid Films, vol. 405, no. 1-2, pp. 50–54, 2002. View at Publisher · View at Google Scholar
  15. G. San Vicente, A. Morales, and M. T. Gutiérrez, “Sol-gel TiO2 antireflective films for textured monocrystalline silicon solar cells,” Thin Solid Films, vol. 403-404, pp. 335–338, 2002. View at Publisher · View at Google Scholar
  16. P. Chrysicopoulou, D. Davazoglou, C. Trapalis, and G. Kordas, “Optical properties of SiO2-TiO2 sol-gel thin films,” Journal of Materials Science, vol. 39, no. 8, pp. 2835–2839, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. R. van de Krol and A. Goossens, “Structure and properties of anatase TiO2 thin films made by reactive electron beam evaporation,” Journal of Vacuum Science & Technology A, vol. 21, no. 1, article 76, 8 pages, 2003. View at Publisher · View at Google Scholar
  18. J. Aarik, A. Aidla, H. Mändar, and V. Sammelselg, “Anomalous effect of temperature on atomic layer deposition of titanium dioxide,” Journal of Crystal Growth, vol. 220, no. 4, pp. 531–537, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. K. N. Rao, “Influence of deposition parameters on optical properties of TiO2 films,” Optical Engineering, vol. 41, no. 9, pp. 2357–2364, 2002. View at Publisher · View at Google Scholar
  20. K. Jiang, A. Zakutayev, J. Stowers et al., “Low-temperature, solution processing of TiO2 thin films and fabrication of multilayer dielectric optical elements,” Solid State Sciences, vol. 11, no. 9, pp. 1692–1699, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Leprince-Wang, “Study of the initial stages of TiO2 growth on Si wafers by XPS,” Surface and Coatings Technology, vol. 150, no. 2-3, pp. 257–262, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Eaton and P. West, Atomic Force Microscopy, Oxford University Press, 2010.
  23. A. Stojic and F. E. Brenker, “Argon ion slicing (ArIS) of mineral and rock samples: a novel tool to prepare large electron transparent thin films for tem use,” in Proceedings of the 40th Lunar and Planetary Institute Science Conference, vol. 40, p. 1807, 2009.
  24. R. W. Kelsall, I. W. Hamley, and M. Geoghegan, Nanoscale Science and Technology, John Wiley & Sons, 2005.
  25. N. Laidani, P. Cheyssac, J. Perrière et al., “Intrinsic defects and their influence on the chemical and optical properties of TiO2−x films,” Journal of Physics D, vol. 43, no. 48, Article ID 485402, 2010. View at Publisher · View at Google Scholar
  26. H. Fujiwara, Spectroscopic Ellipsometry, John Wiley & Sons, 2007.
  27. J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Physica Status Solidi(B), vol. 15, no. 2, pp. 627–637, 1966. View at Publisher · View at Google Scholar
  28. N. Martin, C. Rousselot, D. Rondot, F. Palmino, and R. Mercier, “Microstructure modification of amorphous titanium oxide thin films during annealing treatment,” Thin Solid Films, vol. 300, no. 1-2, pp. 113–121, 1997. View at Scopus
  29. P. Eiamchai, P. Chindaudom, A. Pokaipisit, and P. Limsuwan, “A spectroscopic ellipsometry study of TiO2 thin films prepared by ion-assisted electron-beam evaporation,” Current Applied Physics, vol. 9, no. 3, pp. 707–712, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Guittet, J. Crocombette, and M. Gautier-Soyer, “Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2: charge transfer and electrostatic effects,” Physical Review B, vol. 63, no. 12, Article ID 125117, 7 pages, 2001. View at Publisher · View at Google Scholar
  31. J. Singh and D. E. Wolfe, “Review Nano and macro-structured component fabrication by electron beam-physical vapor deposition (EB-PVD),” Journal of Materials Science, vol. 40, no. 1, pp. 1–26, 2005. View at Publisher · View at Google Scholar
  32. S. H. Woo and C. K. Hwangbo, “Effects of annealing on the optical, structural, and chemical properties of TiO2 and MgF2 thin films prepared by plasma ion-assisted deposition,” Applied Optics, vol. 45, no. 7, pp. 1447–1455, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. V. Mikhelashvili and G. Eisenstein, “Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation,” Journal of Applied Physics, vol. 89, no. 6, pp. 3256–3269, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Y. Lien, D. S. Wuu, W. C. Yeh, and J. C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique,” Solar Energy Materials and Solar Cells, vol. 90, no. 16, pp. 2710–2719, 2006. View at Publisher · View at Google Scholar · View at Scopus