About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 620231, 10 pages
http://dx.doi.org/10.1155/2013/620231
Research Article

Analytical Optimization of Piezoelectric Circular Diaphragm Generator

1Mechanical Department, Engineering Faculty, Razi University, Kermanshah 67149-67346, Iran
2Mechanical Department, Dareshahr Branch, Islamic Azad University, Dareshahr 6961713751, Iran

Received 14 May 2013; Revised 6 August 2013; Accepted 20 August 2013

Academic Editor: Luciano Mescia

Copyright © 2013 S. Mohammadi and M. Abdalbeigi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Khodayari, S. Pruvost, G. Sebald, D. Guyomar, and S. Mohammadi, “Nonlinear pyroelectric energy harvesting from relaxor single crystals,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 4, pp. 693–698, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Guyomar, A. Badel, E. Lefeuvre, and C. Richard, “Toward energy harvesting using active materials and conversion improvement by nonlinear processing,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 52, no. 4, pp. 584–594, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Sebald, E. Lefeuvre, and D. Guyomar, “Pyroelectric energy conversion: optimization principles,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55, no. 3, pp. 538–551, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Mo, L. J. Radziemski, and W. W. Clark, “Analysis of piezoelectric circular diaphragm energy harvesters for use in a pressure fluctuating system,” Smart Materials and Structures, vol. 19, no. 2, Article ID 025016, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Kim, W. W. Clark, and Q. M. Wang, “Piezoelectric energy harvesting using a biomorph circular plate: experimental study,” Journal of Intelligent Material Systems and Structures, vol. 16, no. 10, pp. 855–864, 2005. View at Publisher · View at Google Scholar
  6. S. Kim, W. W. Clark, and Q. Wang, “Piezoelectric energy harvesting with a clamped circular plate: analysis,” Journal of Intelligent Material Systems and Structures, vol. 16, no. 10, pp. 847–854, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Li and S. Chen, “Analytical analysis of a circular PZT actuator for valveless micropumps,” Sensors and Actuators A, vol. 104, no. 2, pp. 151–161, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Mo, R. Wright, W. S. Slaughter, and W. W. Clark, “Behaviour of a unimorph circular piezoelectric actuator,” Smart Materials and Structures, vol. 15, no. 4, pp. 1094–1102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. J. Ramsay and W. W. Clark, “Piezoelectric energy harvesting for bio MEMS applications,” in Proceedings of the 8th Annual International Symposium on Smart Structures and Materials (SPIE' 01), vol. 4332, pp. 429–438, 2001.
  10. Y. C. Shu, I. C. Lien, and W. J. Wu, “An improved analysis of the SSHI interface in piezoelectric energy harvesting,” Smart Materials and Structures, vol. 16, no. 6, pp. 2253–2264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Tylikowski, “Control of circular plate vibrations via piezoelectric actuators shunted with a capacitive circuit,” Thin-Walled Structures, vol. 39, no. 1, pp. 83–94, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Roundy, E. S. Leland, J. Baker et al., “Improving power output for vibration-based energy scavengers,” IEEE Pervasive Computing, vol. 4, no. 1, pp. 28–36, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Lefeuvre, A. Badel, C. Richard, L. Petit, and D. Guyomar, “A comparison between several vibration-powered piezoelectric generators for standalone systems,” Sensors and Actuators A, vol. 126, no. 2, pp. 405–416, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Guyoniar, S. Pruvost, and G. Sebald, “Energy harvesting based on FE-FE transition in ferroelectric single crystals,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55, no. 2, pp. 279–285, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. G. K. Ottman, H. F. Hofmann, and G. A. Lesieutre, “Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode,” IEEE Transactions on Power Electronics, vol. 18, no. 2, pp. 696–703, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Guyomar, G. Sebald, E. Lefeuvre, and A. Khodayari, “Toward heat energy harvesting using pyroelectric material,” Journal of Intelligent Material Systems and Structures, vol. 20, no. 3, pp. 265–271, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Sodano, D. Inman, and G. Park, “Comparison of piezoelectric energy harvesting devices for recharging batteries,” Journal of Intelligent Material Systems and Structures, vol. 16, no. 10, pp. 799–807, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Starner, “Human-powered wearable computing,” IBM Systems Journal, vol. 35, no. 3-4, pp. 618–629, 1996. View at Scopus
  19. T. Starner and J. A. Paradiso, “Human generated power for mobile electronics,” in Low Power Electron, C. Piguet, Ed., pp. 1–35, CRC Press, Boca Raton, Fla, USA, 2004.
  20. P. Niu, P. Chapman, R. Riemer, and X. Zhang, “Evaluation of motions and actuation methods for biomechanical energy harvesting,” in Proceedings of the IEEE 35th Annual Power Electronics Specialists Conference (PESC '04), pp. 2100–2106, Aachen, Germany, June 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Suzuki, T. Katane, H. Saotome, and O. Saito, “Electric power-generating system using magnetic coupling for deeply implanted medical electronic devices,” IEEE Transactions on Magnetics, vol. 38, no. 5, pp. 3006–3008, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Suzuki, T. Katane, and O. Saito, “Fundamental study of an electric power transmission system for implanted medical devices using magnetic and ultrasonic energy,” Journal of Artificial Organs, vol. 6, no. 2, pp. 145–148, 2003. View at Scopus
  23. W. W. Clark and M. J. Ramsay, “Smart material transducers as power sources for MEMS devices,” in Proceedings of the International Symposium on Smart Structures and Microsystems, pp. 19–21, Hong Kong, October 2000.
  24. D. Guyomar, S. Mohammadi, and C. Richard, “Effect of boundary (support) conditions on piezoelectric damping in the case of SSDI vibration control technique,” Mechanical Systems and Signal Processing, vol. 23, no. 2, pp. 501–513, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Ventsel and T. Krauthammer, Thin Plates and Shells Theory Analysis and Applications, Marcel Dekker, New York, NY, USA, 2001.
  26. IEEE standard 176, IEEE Standards on Piezoelectricity, Institute of Electrical and Electronics Engineers, New York, NY, USA, 1978.