About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 639071, 8 pages
http://dx.doi.org/10.1155/2013/639071
Research Article

Inhibitive Action of Ferrous Gluconate on Aluminum Alloy in Saline Environment

1Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, PMB. X680, Pretoria 0001, South Africa
2College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
3Department of Electrical Engineering, Tshwane University of Technology, PMB. X680, Pretoria 0001, South Africa

Received 26 June 2013; Revised 14 October 2013; Accepted 1 November 2013

Academic Editor: Martin Crimp

Copyright © 2013 Patricia Abimbola Idowu Popoola et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The corrosion of aluminum in saline environment in the presence of ferrous gluconate was studied using weight loss and linear polarization methods. The corrosion rates were studied in different concentrations of ferrous gluconate 0.5, 1.0, 1.5, and 2.0 g/mL at 28°C. Experimental results revealed that ferrous gluconate in saline environment reduced the corrosion rate of aluminum alloy at the different concentrations studied. The minimum inhibition efficiency was obtained at 1.5 g/mL concentration of inhibitor while the optimum inhibition efficiency was achieved with 1.0 g/mL inhibitor concentration. The results showed that adsorption of ferrous gluconate on the aluminium alloy surface fits Langmuir adsorption isotherm. The potentiodynamic polarization results showed that ferrous gluconate is a mixed type inhibitor. Ferrous gluconate acted as an effective inhibitor for aluminium alloy within the temperature and concentration range studied. The data obtained from weight loss and potentiodynamic polarization methods were in good agreement.