About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 651365, 7 pages
http://dx.doi.org/10.1155/2013/651365
Research Article

CFD Study on Wall/Nanoparticle Interaction in Nanofluids Convective Heat Transfer

1Iranian Academic Center for Education, Culture and Research, Branch of Science & Technology University (JDEVS), Tehran 1981983889, Iran
2Department of Mechanical Engineering, Islamic Azad University, Shahre-Rey Branch, Tehran 144-18155, Iran
3Department of Chemical Engineering, Islamic Azad University, Center Tehran Branch, Tehran, Iran

Received 20 May 2013; Revised 31 July 2013; Accepted 24 September 2013

Academic Editor: Alessandro Massaro

Copyright © 2013 Mohammad Reza Tarybakhsh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Davarnejad, S. Barati, and M. Kooshki, “CFD simulation of the effect of particle size on the nanofluids convective heat transfer in the developed region in a circular tube,” SpringerPlus, vol. 2, no. 1, article 192, 2013.
  2. S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in Developments and Applications of Non-Newtonian Flows, D. A. Siginer and H. P. Wang, Eds., The American Society of Mechanical Engineers, New York, NY, USA, 1995.
  3. V. Trisaksri and S. Wongwises, “Critical review of heat transfer characteristics of nanofluids,” Renewable and Sustainable Energy Reviews, vol. 11, no. 3, pp. 512–523, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. X.-Q. Wang and A. S. Mujumdar, “Heat transfer characteristics of nanofluids: a review,” International Journal of Thermal Sciences, vol. 46, no. 1, pp. 1–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. X.-Q. Wang and A. S. Mujumdar, “A review on nanofluids. Part I: theoretical and numerical investigations,” Brazilian Journal of Chemical Engineering, vol. 25, no. 4, pp. 613–630, 2008. View at Scopus
  6. Y. Li, J. Zhou, S. Tung, E. Schneider, and S. Xi, “A review on development of nanofluid preparation and characterization,” Powder Technology, vol. 196, no. 2, pp. 89–101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Kakaç and A. Pramuanjaroenkij, “Review of convective heat transfer enhancement with nanofluids,” International Journal of Heat and Mass Transfer, vol. 52, no. 13-14, pp. 3187–3196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. K. V. Wong and O. de Leon, “Applications of nanofluids: current and future,” Advances in Mechanical Engineering, vol. 2010, Article ID 519659, 11 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Donzelli, R. Cerbino, and A. Vailati, “Bistable heat transfer in a nanofluid,” Physical Review Letters, vol. 102, no. 10, Article ID 104503, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Arruebo, R. Fernández-Pacheco, M. R. Ibarra, and J. Santamaría, “Magnetic nanoparticles for drug delivery,” Nano Today, vol. 2, no. 3, pp. 22–32, 2007.
  11. W. Yu, D. M. France, D. Singh, E. V. Timofeeva, D. S. Smith, and J. L. Routbort, “Mechanisms and models of effective thermal conductivities of nanofluids,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 8, pp. 4824–4849, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Paul, M. Chopkar, I. Manna, and P. K. Das, “Techniques for measuring the thermal conductivity of nanofluids: a review,” Renewable and Sustainable Energy Reviews, vol. 14, no. 7, pp. 1913–1924, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Abu-Nada, “Effects of variable viscosity and thermal conductivity of Al2O3: water nanofluid on heat transfer enhancement in natural convection,” International Journal of Heat and Fluid Flow, vol. 30, no. 4, pp. 679–690, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. K. V. Sharma, L. S. Sundar, and P. K. Sarma, “Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert,” International Communications in Heat and Mass Transfer, vol. 36, no. 5, pp. 503–507, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. K. Moraveji, M. Darabi, S. M. H. Haddad, and R. Davarnejad, “Modeling of convective heat transfer of a nanofluid in the developing region of tube flow with computational fluid dynamics,” International Communications in Heat and Mass Transfer, vol. 38, no. 9, pp. 1291–1295, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. S. K. Gupte, S. G. Advani, and P. Huq, “Role of micro-convection due to non-affine motion of particles in a mono-disperse suspension,” International Journal of Heat and Mass Transfer, vol. 38, no. 16, pp. 2945–2958, 1995. View at Scopus
  17. P. Bhattacharya, S. K. Saha, A. Yadav, P. E. Phelan, and R. S. Prasher, “Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids,” Journal of Applied Physics, vol. 95, no. 11, pp. 6492–6494, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Evans, J. Fish, and P. Keblinski, “Role of Brownian motion hydrodynamics on nanofluid thermal conductivity,” Applied Physics Letters, vol. 88, no. 9, Article ID 093116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Krishnamurthy, P. Bhattacharya, P. E. Phelan, and R. S. Prasher, “Enhanced mass transport in nanofluids,” Nano Letters, vol. 6, no. 3, pp. 419–423, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. T. K. Hong and H. S. Yang, “Study of the enhanced thermal conductivity of Fe nanofluids,” Journal of Applied Physics, vol. 97, Article ID 064311, 2005.
  21. K. S. Hong, “Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles,” Applied Physics Letters, vol. 88, Article ID 031901, 2006. View at Publisher · View at Google Scholar
  22. C. H. Li and G. P. Peterson, “Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids),” Journal of Applied Physics, vol. 99, no. 8, Article ID 084314, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Haddad, E. Abu-Nada, H. F. Oztop, and A. Mataoui, “Natural convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement?” International Journal of Thermal Sciences, vol. 57, pp. 152–162, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Azizian, E. Doroodchi, and B. Moghtaderi, “Effect of nanoconvection caused by Brownian motion on the enhancement of thermal conductivity in nanofluids,” Industrial and Engineering Chemistry Research, vol. 51, no. 4, pp. 1782–1789, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. B. X. Wang, H. Li, and X. F. Peng, “Research on the heat-conduction enhancement for liquid with nano-particle suspension,” Journal of Thermal Science, vol. 11, no. 3, pp. 214–219, 2002. View at Scopus
  26. J. F. Brady, R. J. Phillips, J. C. Lester, and G. Bossis, “Dynamic simulation of hydrodynamically interacting suspensions,” Journal of Fluid Mechanics, vol. 195, pp. 257–280, 1988.
  27. K. Vondermassen, J. Bongers, A. Mueller, and H. Versmold, “Brownian motion: a tool to determine the pair potential between colloid particles,” Langmuir, vol. 10, no. 5, pp. 1351–1353, 1994. View at Scopus
  28. A. J. Banchio, J. Gapinski, A. Patkowski et al., “Many-body hydrodynamic interactions in charge-stabilized suspensions,” Physical Review Letters, vol. 96, no. 13, Article ID 138303, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. G. P. Peterson, C. H. Li, J. P. Hartnett, and T. F. Irvine, Advances in Heat Transfer, vol. 39, Pergamon, New York, NY, USA, 2005.
  30. G. K. Batchelor, “Brownian diffusion of particles with hydrodynamic interaction,” Journal of Fluid Mechanics, vol. 74, no. 1, pp. 1–29, 1976. View at Scopus