About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 672325, 9 pages
Research Article

Modifications on Microporosity and Physical Properties of Cement Mortar Caused by Carbonation: Comparison of Experimental Methods

Laboratory of Civil Engineering and Mechanical Engineering, Department of Civil Engineering, National Institute of Applied Sciences, 35000 Rennes, France

Received 20 May 2013; Revised 31 July 2013; Accepted 1 August 2013

Academic Editor: Yucel Birol

Copyright © 2013 Son Tung Pham. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The influence of carbonation on the microstructure of normalised CEM II mortar was studied using nitrogen adsorption and porosity accessible to water. Samples were prepared and subjected to accelerated carbonation at 20°C, 65% relative humidity, and 20% CO2 concentration. Conflicts in results were observed because while the pore size distributions calculated by BJH method from nitrogen adsorption provided evolution of the micro- and mesopores during carbonation, the porosity accessible to water showed changes in all three porous domains: macro-, meso- and micropores. Furthermore, the porous domains explored by water and nitrogen molecules are not the same because of the difference in the molecular sizes. These two techniques are therefore different and help to complementarily evaluate the effects of carbonation. We also examined the evolution of macrophysical properties such as the solid phase volume using helium pycnometry, gas permeability, thermal conductivity, thermal diffusivity, and longitudinal and transverse ultrasonic velocities. This is a multiscale study where results on microstructural changes can help to explain the evolution of macro physical properties.