About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 672325, 9 pages
http://dx.doi.org/10.1155/2013/672325
Research Article

Modifications on Microporosity and Physical Properties of Cement Mortar Caused by Carbonation: Comparison of Experimental Methods

Laboratory of Civil Engineering and Mechanical Engineering, Department of Civil Engineering, National Institute of Applied Sciences, 35000 Rennes, France

Received 20 May 2013; Revised 31 July 2013; Accepted 1 August 2013

Academic Editor: Yucel Birol

Copyright © 2013 Son Tung Pham. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Véronique Baroghel Bouny, Conception des bétons pour une durée de vie donnée des ouvrages, Association française de génie civil, 2004.
  2. T. Mickaël, Modelling of Atmospheric Carbonation of Cement Based Materials Considering the Kinetic Effects and Modifications of the Microstructure [Ph.D. thesis], L'école nationale des ponts et chausses, Paris, France, 2005.
  3. V. T. Ngala and C. L. Page, “Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes,” Cement and Concrete Research, vol. 27, no. 7, pp. 995–1007, 1997. View at Scopus
  4. W. Jaafar, Influence de la Carbonatation sur la Porosité et la Perméabilité des Bétons, Diplôme d’études Approfondies [M.S. thesis], Laboratoire Central des Ponts et Chaussées, Paris, France, 2003.
  5. H. Naono and M. Hakuman, “Analysis of adsorption isotherms of water vapor for nonporous and porous adsorbents,” Journal of Colloid And Interface Science, vol. 145, no. 2, pp. 405–412, 1991. View at Scopus
  6. N. De Belie, J. Kratky, and S. Van Vlierberghe, “Influence of pozzolans and slag on the microstructure of partially carbonated cement paste by means of water vapour and nitrogen sorption experiments and BET calculations,” Cement and Concrete Research, vol. 40, no. 12, pp. 1723–1733, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. Zhang, G. Ye, and E. Koenders, “Investigation of the structure of heated Portland cement paste by using various techniques,” Construction and Building Materials, vol. 38, pp. 1040–1050, 2013.
  8. S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of gases in multimolecular layers,” Journal of the American Chemical Society, vol. 60, no. 2, pp. 309–319, 1938. View at Scopus
  9. T. A. Bier, J. Kropp, and H. K. Hilsdorf, “Carbonation and realkalinization of concrete and hydrated cement paste,” in Durability of Construction Materials, J. C. Maso, Ed., vol. 3, pp. 927–934, Chapman and Hall, London, UK, 1987.
  10. Association française pour la construction et pour la recherche et les essais sur les matériaux et les constructions (AFPC-AFREM), “Essai de carbonatation accéléré, mesure de l’épaisseur de béton carbonate,” in Durabilité des Bétons, Méthodes Recommandées pour la Mesure des Grandeurs Associées à la Durabilité, J. P. Ollivier, Ed., pp. 153–158, Laboratoire des Matériaux et Durabilité des Constructions, Toulouse, France, 1997.
  11. E. P. Barrett, L. G. Joyner, and P. P. Halenda, “The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms,” Journal of the American Chemical Society, vol. 73, no. 1, pp. 373–380, 1951. View at Scopus
  12. J. J. Kollek, “The determination of the permeability of concrete to oxygen by the Cembureau method-a recommendation,” Materials and Structures, vol. 22, no. 3, pp. 225–230, 1989. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Carde, “La carbonatation,” Le Magazine Béton[S], no. 2, pp. 53–54, 2006.
  14. W. Eitel, Silicate Science: Ceramics and Hydraulic Binders, vol. 5, Academic press, New York, NY, USA, 1966.
  15. E. G. Swenson and P. J. Sereda, “Mechanism of the carbonation shrinkage of lime and hydrated cement,” Journal of Applied Chemistry, vol. 18, no. 4, pp. 111–117, 1968.
  16. F. Y. Houst and F. H. Wittmann, “Retrait de carbonatation,” in Proceedings of the IABSE Symposium, pp. 255–260, Lisbon, Portugal, 1989.
  17. Association française pour la construction et pour la recherche et les essais sur les matériaux et les constructions (AFPC-AFREM), “Détermination de la masse volumique apparente et de la porosité accessible à l’eau,” in Durabilité des Béton, Méthodes Recommandées pour la Mesure des Grandeurs Associées à la Durabilité, J. P. Ollivier, Ed., pp. 121–124, Laboratoires des Matériaux et Durabilité des Constructions, Toulouse, France, 1997.
  18. RILEM TC 116-PCD, “Permeability of concrete as a criterion of its durability,” Material Structure, vol. 32, pp. 174–1179, 1999.
  19. A. M. Neville, Properties of Concrete, Longman Scientific and Technical, London, UK, 1990.
  20. L. Qixian and J. H. Bungey, “Using compression wave ultrasonic transducers to measure the velocity of surface waves and hence determine dynamic modulus of elasticity for concrete,” Construction and Building Materials, vol. 10, no. 4, pp. 237–242, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Y. Houst and F. H. Wittmann, “Retrait de carbonatation,” in Proceedings of the IABSE Symposium, pp. 255–260, Lisbon, Portugal, 1989.
  22. V. G. Papadakis, C. G. Vayenas, and M. N. Fardis, “Reaction engineering approach to the problem of concrete carbonation,” AIChE Journal, vol. 35, no. 10, pp. 1639–1650, 1989. View at Scopus
  23. V. G. Papadakis, C. G. Vayenas, and M. N. Fardis, “Fundamental modeling and experimental investigation of concrete carbonation,” ACI Materials Journal, vol. 88, no. 4, pp. 363–373, 1991. View at Scopus