About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 674306, 11 pages
http://dx.doi.org/10.1155/2013/674306
Research Article

Geotechnical and Physico-Chemical Characterization of Low Lime Fly Ashes

Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

Received 3 January 2013; Accepted 17 February 2013

Academic Editor: Jacques Huot

Copyright © 2013 Arif Ali Baig Moghal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. MOEF (Ministry of Environment and Forestry), In the Gazette of India Extraordinary, Part II—Section 3—Sub Section (ii), Ministry of Environment and Forests Notification, New Delhi, India, September 1999, http://envfor.nic.in:80/legis/hsm/so763(e).pdf.
  2. ASTM C618, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM, West Conshohocken, Pa, USA, 2008.
  3. ASTM D854, Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM, West Conshohocken, Pa, USA, 2006.
  4. A. A. B. Moghal, Enhancing the potential of class F fly ashes for geotechnical and geoenvironmental applications [Ph.D. thesis], Indian Institute of Science, Bangalore, India, 2010.
  5. M. R. Schure, P. A. Soltys, D. F. S. Natusch, and T. Mauney, “Surface area and porosity of coal fly ash,” Environmental Science and Technology, vol. 19, no. 1, pp. 82–86, 1985. View at Publisher · View at Google Scholar · View at Scopus
  6. D. El-Mogazi, D. J. Lisk, and L. H. Weinstein, “A review of physical, chemical, and biological properties of fly ash and effects on agricultural ecosystems,” The Science of the Total Environment, vol. 74, no. 1, pp. 1–37, 1988. View at Scopus
  7. S. V. Mattigod, D. Rai, L. E. Eary, and C. C. Ainsworth, “Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: I. Review of the major elements,” Journal of Environmental Quality, vol. 19, no. 2, pp. 188–201, 1990. View at Scopus
  8. T. L. Theis and K. H. Gardner, “Environmental assessment of ash disposal,” Critical Reviews in Environmental Control, vol. 20, no. 1, pp. 21–42, 1990. View at Scopus
  9. J. E. Gillott, Clay in Engineering Geology, Elsevier Publishing Company, London, UK, 2nd edition, 1987.
  10. B. R. Puri and K. Murari, “Studies in specific area measurement of soil. I. Comparison of different method,” Soil Science, vol. 96, no. 5, pp. 331–336, 1963. View at Publisher · View at Google Scholar
  11. S. Lowell, ,Introduction to Powder Surface Area, John Wiley & Sons, New York, NY, USA, 1979.
  12. J. P. Martin, R. A. Collins, J. S. Browning, and F. J. Biehl, “Properties and use of fly ashes for embankments,” Journal of Energy Engineering, vol. 116, no. 2, pp. 71–86, 1990. View at Scopus
  13. N. S. Pandian, C. Rajasekhar, and A. Sridharan, “Studies of the specific gravity of some Indian coal ashes,” Journal of Testing and Evaluation, vol. 26, no. 3, pp. 177–186, 1998. View at Scopus
  14. A. Sridharan, N. S. Pandian, and P. Srinivasa Rao, “Shear strength characteristics of some Indian fly ashes,” Ground Improvement, vol. 2, no. 3, pp. 141–146, 1998. View at Scopus
  15. ASTM D422-63, Standard Test Method for Particle-Size Analysis of Soils, ASTM, West Conshohocken, Pa, USA, 2007.
  16. ASTM B822-02, Standard Test Method for Particle Size Distribution of Metal Powders and Related Compounds by Light Scattering, ASTM, West Conshohocken, Pa, USA, 2002.
  17. D. N. White and J. B. Dixon, “Scanning electron microscopy of minerals in soils,” Texas Society of Electron Microscopy Journal, vol. 26, no. 1, pp. 9–11, 1995.
  18. BS: 1377, British Standard Methods of Test for soil for Engineering Purposes—Part 2: Determination of Liquid Limit, Preferred Method Using the Cone Penetrometer, British Standards Institution, London, UK, 1990.
  19. V. Yudhbir and Y. Honjo, “Application of geotechnical engineering to environmental control,” in Proceedings of the 9th Asian Regional Conference on Soil Mechanics and Foundation Engineering, vol. 2, pp. 431–469, Bangkok, Thailand, 1991.
  20. M. G. Winter and B. G. Clarke, “Improved use of pulverised fuel ash as general fill,” Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, vol. 155, no. 2, pp. 133–141, 2002. View at Scopus
  21. K. L. Moulton, Technology and Utilization of Power Plant Ash in Structural Fills and Embankments, West Virginia University, 1978.
  22. A. Sridharan and P. V. Sivapullaiah, “Mini compaction test apparatus for fine grained soils,” Geotechnical Testing Journal, vol. 28, no. 3, pp. 240–246, 2005. View at Scopus
  23. ASTM D2166, Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM, West Conshohocken, Pa, USA, 2006.
  24. ASTM D5102, Standard Test Methods for Unconfined Compressive Strength of Compacted Soil-Lime Mixtures, ASTM, West Conshohocken, Pa, USA, 2009.
  25. A. M. Digioa and W. C. Nuzzo, “Fly ash as structural fill,” Journal of the Power Division, vol. 98, no. 1, pp. 77–92, 1972.
  26. G. A. Leonards and B. Bailey, “Pulverised coal ash as structural fill,” Journal of the Geotechnical Engineering, vol. 108, no. 4, pp. 517–531, 1982.
  27. B. Kim, M. Prezzi, and R. Salgado, “Geotechnical properties of fly and bottom ash mixtures for use in highway embankments,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 131, no. 7, pp. 914–924, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. B. K. Hough, Basic Soils Engineering, John Wiley & Sons Inc, NYSE, New York, NY, USA, 2nd edition, 1977.
  29. C. Rajasekhar, Retention and permeability characteristics of clays and clay-fly ash systems subjected to flow of contaminants [Ph.D. thesis], Indian Institute of Science, Bangalore, India, 1995.
  30. N. S. Pandian and S. Balasubramonian, “Permeability and consolidation behavior of fly ashes,” Journal of Testing and Evaluation, vol. 27, no. 5, pp. 337–342, 1999. View at Scopus
  31. K. M. Skarzynska, A. K. M. Rainbow, and E. Zawisza, “Characteristic of ash in storage ponds,” in Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, pp. 1915–1918, Rio de Janeiro, Brazil, August 1989. View at Scopus
  32. A. A. B. Moghal and P. V. Sivapullaiah, “Effect of pozzolanic reactivity on compressibility characteristics of stabilised low lime fly ashes,” Geotechnical and Geological Engineering, vol. 29, no. 5, pp. 665–673, 2011. View at Publisher · View at Google Scholar
  33. ASTM D2435, Standard Test Methods for One-Dimensional Consolidation of Soils Using Incremental Loading, ASTM International, West Conshohocken, Pa, USA, 2004.
  34. W. G. Holtz and H. J. Gibbs, “Engineering characteristics of expansive clays,” ASCE Transactions, vol. 121, pp. 641–663, 1956, paper no. 2814.
  35. S. M. Rao and A. Sridharan, “Mechanism controlling the volume change behavior of kaolinite,” Clays & Clay Minerals, vol. 33, no. 4, pp. 323–328, 1985. View at Scopus
  36. A. Sridharan and K. Prakash, “Classification procedures for expansive soils,” Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, vol. 143, no. 4, pp. 235–240, 2000. View at Scopus
  37. D. F. S. Natusch, J. R. Wallace, and C. A. Evans Jr., “Toxic trace elements: preferential concentration in respirable particles,” Science, vol. 183, no. 4121, pp. 202–204, 1974. View at Scopus
  38. H. van der Sloot, O. Piepers, and A. Kok, “A standard leaching test for combustion residues,” Tech. Rep. OSTI ID: 7005861, Energieonderzoek Centrum Nederland, SOSUV, Amsterdam, The Netherlands, 1984.
  39. USEPA, Tests Methods for Evaluating Solid Waste, Physical Chemical Methods, SW-846, Method 3050B, US Environmental Protection Agency, Washington, DC, USA, 1996.
  40. K. Fytianos, B. Tsaniklidi, and E. Voudrias, “Leachability of heavy metals in Greek fly ash from coal combustion,” Environment International, vol. 24, no. 4, pp. 477–486, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Praharaj, M. A. Powell, B. R. Hart, and S. Tripathy, “Leachability of elements from sub-bituminous coal fly ash from India,” Environment International, vol. 27, no. 8, pp. 609–615, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. P. V. Sivapullaiah and A. A. B. Moghal, “Leachability of trace elements from two stabilized low lime indian fly ashes,” Environmental Earth Sciences, vol. 61, no. 8, pp. 1735–1744, 2010. View at Publisher · View at Google Scholar · View at Scopus