About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 789373, 16 pages
http://dx.doi.org/10.1155/2013/789373
Research Article

Parameters Controlling the Oxide Reduction during Sintering of Chromium Prealloyed Steel

1Institute of Materials Research of SAS, Watsonova 47, 040 01 Košice, Slovakia
2Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, 412 96 Göteborg, Sweden
3University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Košice, Slovakia

Received 21 May 2013; Accepted 28 August 2013

Academic Editor: Jörg M. K. Wiezorek

Copyright © 2013 Monika Hrubovčáková et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Berg and B. Maroli, “Properties obtained by chromium contained material,” in Advances in Powder Metallurgy and Particulate Materials, V. Arnhold, C. L. Chu, W. F. Jandeska Jr., and H. I. Sanderow, Eds., part 8, pp. 1–14, MPIF, Princeton, NJ, USA, 2002.
  2. A. Bergmark, J. Andersson, and S. Bengston, “Chromium pre-alloyed PM steels for high structural performance,” in Proceedings of the EURO PM2005 Conference, vol. 1, pp. 157–152, EPMA, Prague, Czech Republic, 2005.
  3. U. Engstrom, D. Milligan, and A. Klekovkin, “Mechanical properties of high performance chromium materials,” in Advances in Powder Metallurgy & Particulates Materials, vol. 7, pp. 21–32, MPIF, San Diego, Calif, USA, 2004.
  4. A. Bergmark, O. Bergman, and L. Alzati, “Pre-alloyed chromium materials for highly fatigue loaded PM parts,” in Advanced in Powder Metallurgy & Particulates Material, part 2, pp. 13–21, MPIF, Chicago, Ill, USA, 2004.
  5. M. Hull, “Astaloy CrM new generation powder from Höganäs,” Powder Metallurgy, vol. 41, no. 4, pp. 232–233, 1998.
  6. H. Karlsson, Role of surface oxides in sintering of chromium-alloyed steel powder [Ph.D. thesis], Chalmers University of Technology, Goteborg, Sweden, 2005.
  7. E. Hryha and L. Nyborg, “Oxide transformation during sintering of pre-alloyed water atomized steel powder,” in Proceedings of the PM2010 Powder Metallurgy World Congress & Exhibition, vol. 2, pp. 267–274, Florence, Italy, 2010.
  8. H. Karlsson, L. Nyborg, and S. Berg, “Surface interaction during sintering of water-atomized pre-alloyed steel powder,” in Proceedings of the World Congress & Exhibition on Powder Metallurgy, vol. 2, pp. 22–23, EPMA, Vienna, Austria, 2004.
  9. E. Hryha, C. Gierl, L. Nyborg, H. Danninger, and E. Dudrova, “Surface composition of the steel powders pre-alloyed with manganese,” Applied Surface Science, vol. 256, no. 12, pp. 3946–3961, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Hryha, L. Nyborg, and S. Bengston, “Surface analysis of pre-alloyed with manganese steel powder,” in Proceedings of the PM2010 World Congress and Exhibition, vol. 2, pp. 169–174, EPMA, Florence, Italy, 2010.
  11. D. Chasoglou, E. Hryha, and L. Nyborg, “Effect of sintering atmosphere on the transformation of surface oxides during the sintering of chromium alloyed steels,” Powder Metallurgy Progress, vol. 9, no. 3, pp. 141–147, 2009.
  12. D. Chasoglou, E. Hryha, and L. Nyborg, “Surface interactions during sintering of chromium-alloyed PM steels in different atmospheres,” in Proceedings of the PM2010 World Congress and Exhibition, vol. 2, pp. 45–52, EPMA, Florence, Italy, 2010.
  13. O. Bergman, B. Lindqvist, and S. Bengtsson, “Influence of sintering parameters on the mechanical performance of PM steels pre-alloyed with chromium,” Materials Science Forum, vol. 534–536, no. 1, pp. 545–548, 2007. View at Scopus
  14. O. Bergman, Study of oxide reduction and nitrogen uptake in sintering of chromium-alloyed steel powder [Licentiate Thesis], 2008.
  15. S. C. Mitchell and A. Cias, “Carbothermic reduction of oxides during nitrogen sintering of manganese and chromium steels,” Powder Metallurgy Progress, vol. 4, no. 3, pp. 132–142, 2004.
  16. M. Youseffi, S. C. Mitchell, A. S. Wronski, and A. Cias, “Sintering, microstructure, and mechanical properties of PM manganese-molybdenum steels,” Powder Metallurgy, vol. 43, no. 4, pp. 353–358, 2000. View at Scopus
  17. E. Hryha, Fundamental study of Mn containing PM steels with alloying method of both premix and pre-alloy [Ph.D. thesis], IMR SAS, Košice, Slovakia, 2007.
  18. E. Hryha, L. Cajkova, and E. Dudrova, “Study of reduction-oxidation processes in Cr-Mo pre alloyed steels during sintering by continuous atmosphere monitoring,” Powder Metallurgy Progress, vol. 7, no. 4, pp. 181–189, 2008.
  19. E. Hryha and E. Dudrova, “The sintering behaviour of Fe-Mn powder system, correlation between thermodynamics and sintering process, manganese distribution and microstructure composition, effect of alloying mode,” in Application of Thermodynamics to Biological and Materials Science, M. Tadashi, Ed., vol. 22, pp. 573–602, InTech, Rijeka, Croatia, 2011.
  20. E. Hryha, E. Dudrova, and L. Nyborg, “On-line control of processing atmospheres for proper sintering of oxidation-sensitive PM steels,” Journal of Materials Processing Technology, vol. 212, no. 4, pp. 977–987, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Hryha, L. Nyborg, C. Gierl, H. Danninger, and S. Bengtsson, “Surface analysis of prealloyed steel powders: qualitative and quantitative aspects,” in Proceedings of the PM2010 World Congress and Exhibition, vol. 1, pp. 25–32, EPMA, Florence, Italy, 2010.
  22. E. Hryha and L. Nyborg, “Changes in oxide chemistry during consolidation of Cr/Mn water atomized steel powder,” Powder Metallurgy Progress, vol. 11, no. 1-2, pp. 42–50, 2011.
  23. E. Mosca, “Controlled atmospheres in powder metallurgy, in sintering theory and practice,” Intensive Short Course, EPMA, Torino, Italy, 1996.
  24. P. Beiss, “Sintering atmospheres for PM steels,” in Proceedings of the Höganäs Chair in Powder Metallurgy Workshop Sintering Atmospheres, Vienna, Austria, 1999.
  25. G. F. Bocchini, “Influence of controlled atmospheres on the proper sintering of carbon steels,” Powder Metallurgy Progress, vol. 4, no. 1, pp. 1–34, 2004.
  26. J. Ardvidsson, “On-line measurement of sintering atmospheres,” in Proceedings of the World Congress PM98, vol. 2, pp. 253–260, EPMA, Grenada, Spain, 1998.
  27. P. Ortiz and F. Castro, “Thermodynamic and experimental study of role of sintering atmospheres and graphite additions on oxide reduction in Astaloy CrM powder compacts,” Powder Metallurgy, vol. 47, no. 3, pp. 291–298, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Ortiz and F. Castro, “Study of gas solid interactions during sintering of Cr-containing PM steels,” in Proceedings of the PM2003 Conference, vol. 1, pp. 243–248, EPMA, Valencia, Spain, 2003.
  29. L. M. Berger, S. Stolle, W. Gruner, and K. Wetzig, “Investigation of the carbothermal reduction process of chromium oxide by micro- and lab-scale methods,” International Journal of Refractory Metals and Hard Materials, vol. 19, no. 2, pp. 109–121, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Gruner, S. Stolle, and K. Wetzig, “Formation of COx species during the carbothermal reduction of oxides of Zr, Si, Ti, Cr, W, and Mo,” International Journal of Refractory Metals and Hard Materials, vol. 18, no. 2, pp. 137–145, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Danninger and C. Gierl, “Processes in PM steel compacts during the initial stages of sintering,” Materials Chemistry and Physics, vol. 67, no. 1-3, pp. 49–55, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Danninger, C. Gierl, S. Kremel, G. Leitner, and K. Jaenicke-Roessler, “Degassing during sintering of different Fe and Fe-0.8%C powder compacts,” in Proceedings of the PM World Congress Sintering (PM98), vol. 2, pp. 342–346, EPMA, Grenada, Spain, 1998.
  33. H. Danninger, C. Gierl, S. Kremel, G. Leitner, K. Jaenicke-Roessler, and Y. Yu, “Degassing and deoxidation process during sintering of unalloyed and alloyed PM steels,” Powder Metallurgy, vol. 2, no. 3, pp. 125–139, 2002.
  34. H. Danninger, C. Gierl, S. Kremel, G. Leitner, and K. Jaenicke-Roessler, “A simple method to study the degassing and reduction processes during sintering of ferrous powder compacts,” P/M Science & Technology Briefs, vol. 6, no. 3, pp. 10–14, 2004.
  35. H. Danninger, C. Xu, and B. Lindqvist, “Oxygen removal during sintering of steels prepared from Cr-Mo and Mo prealloyed powders,” Materials Science Forum, vol. 534–536, no. 1, pp. 577–580, 2007. View at Scopus
  36. M. Hrubovcakova, Microchemistry of interfaces in sintered microstructure of sintered high-strength steels [Ph.D. thesis], IMR SAS, Košice, Slovakia, 2011.
  37. M. Hrubovcakova, E. Dudrova, and J. Harvanova, “Influence of carbon content on oxide reduction during sintering of Cr-Mo-C pre-alloyed steel,” Powder Metallurgy Progress, vol. 11, no. 1-2, pp. 115–122, 2011.
  38. M. Dlapka, Sinterhardening grade steels with sufficient toughness for synchronizer hub applications [Ph.D. thesis], TU, Vienna, Austria, 2011.
  39. O. Bergman, Key aspect of sintering powder metallurgy steel pre-alloyed with chromium and manganese [Ph.D. thesis], Chalmers University of Technology, Gothenburg, Sweden, 2011.