About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 854928, 5 pages
http://dx.doi.org/10.1155/2013/854928
Research Article

Effects of Excess Cu Addition on Photochromic Properties of AgCl-Urethane Resin Composite Films

1Department of Material Science, Interdisciplinary Faculty of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
2Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561, Japan
3Ceramic Research Laboratory, Nagoya Institute of Technology, 10-6-29 Asahigaoka, Tajimi, Gifu 507-0071, Japan

Received 30 April 2013; Accepted 11 July 2013

Academic Editor: Yuanhua Lin

Copyright © 2013 Hidetoshi Miyazaki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. L. Kraevskii and V. F. Solinov, “Interface models for the photochromism and thermochromism of glasses with nanocrystals,” Journal of Non-Crystalline Solids, vol. 316, no. 2-3, pp. 372–383, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. W. H. Armistead and S. D. Stookey, “Photochromic silicate glasses sensitized by silver halides,” Science, vol. 144, no. 3615, pp. 150–154, 1964. View at Scopus
  3. H. Tomonaga and T. Morimoto, “Photochromic coatings containing Ag(Cl1−xBrx) microcrystals,” Journal of Sol-Gel Science and Technology, vol. 19, no. 1–3, pp. 681–685, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Dong, J. Wang, X. Feng et al., “Fabrication and characterization of nanometer-sized AgCl/PMMA hybrid materials,” Modern Applied Science, vol. 2, no. 6, pp. 49–54, 2008.
  5. H. Miyazaki, H. Shimoguchi, H. Suzuki, and T. Ota, “Synthesis of photochromic AgCl-urethane resin composite films,” Advances in Materials Science and Engineering, vol. 2012, Article ID 784202, 4 pages, 2012. View at Publisher · View at Google Scholar
  6. I. Yasui, “Hikarizairyo amorphous-to-tankessyo,” Dainihon Tosho, pp. 178–184, 1991, Japanese.
  7. H. Miyazaki, Y. Baba, M. Inada, A. Nose, H. Suzuki, and T. Ota, “Fabrication of photochromic tungsten oxide based composite film using peroxoisopolytungstic acid,” Bulletin of the Chemical Society of Japan, vol. 84, no. 12, pp. 1390–1392, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Miyazaki, M. Inada, H. Suzuki, and T. Ota, “Fabrication of WO3-based composite films and improvement its photochromic properties by copper doping,” Bulletin of the Chemical Society of Japan, vol. 85, no. 9, pp. 1053–1056, 2012. View at Publisher · View at Google Scholar
  9. R. K. Pathak, V. K. Hinge, P. Mondal, and C. P. Rao, “Ratiometric fluorescence off-on-off sensor for Cu2+ in aqueous buffer by a lower rim triazole linked benzimidazole conjugate of calix[4]arene,” Dalton Transactions, vol. 41, no. 35, pp. 10652–10660, 2012. View at Publisher · View at Google Scholar
  10. T. He, Y. Ma, Y. Cao, Y. Yin, W. Yang, and J. Yao, “Enhanced visible-light coloration and its mechanism of MoO3 thin films by Au nanoparticles,” Applied Surface Science, vol. 180, no. 3-4, pp. 336–340, 2001. View at Publisher · View at Google Scholar
  11. T. He, Y. Ma, Y. Cao et al., “Enhancement effect of gold nanoparticles on the UV-light photochromism of molybdenum trioxide thin films,” Langmuir, vol. 17, no. 26, pp. 8024–8027, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Pascova and I. Gutzow, “Model investigation of the mechanism of formation of phototropic silver halide phases in glasses,” Glastechnische Berichte, vol. 56, no. 12, pp. 324–330, 1983. View at Scopus