About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 857196, 8 pages
http://dx.doi.org/10.1155/2013/857196
Review Article

Application of Electron Beam Melting to the Removal of Phosphorus from Silicon: Toward Production of Solar-Grade Silicon by Metallurgical Processes

1International Research Center for Sustainable Materials, Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
2Department of Materials Engineering, Graduate School of Engineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
3Department of Mechanical Science and Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan

Received 28 June 2013; Accepted 16 September 2013

Academic Editor: Raghubir Singh Anand

Copyright © 2013 Hideaki Sasaki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. PV NEWS, 31, 2012.
  2. R. H. Hopkins and A. Rohatgi, “Impurity effects in silicon for high efficiency solar cells,” Journal of Crystal Growth, vol. 75, no. 1, pp. 67–79, 1986. View at Scopus
  3. M. A. Martorano, J. B. Ferreira Neto, T. S. Oliveira, and T. O. Tsubaki, “Refining of metallurgical silicon by directional solidification,” Materials Science and Engineering B, vol. 176, no. 3, pp. 217–226, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Kato, N. Yuge, S. Hiwasa, H. Terashima, and F. Aratani, “New approach for refining process to solar grade silicon feedstock from metallurgical grade,” Materia Japan, vol. 41, no. 1, pp. 54–56, 2002. View at Publisher · View at Google Scholar
  5. F. A. Trumbore, “Solid solubilities of impurity elements in germanium and silicon,” The Bell System Technical Journal, vol. 30, pp. 205–233, 1960.
  6. T. Ikeda and M. Maeda, “Purification of metallurgical silicon for solar-grade silicon by electron beam button melting,” ISIJ International, vol. 32, no. 5, pp. 635–642, 1992. View at Scopus
  7. N. Yuge, H. Baba, Y. Sakaguchi, K. Nishikawa, H. Terashima, and F. Aratani, “Purification of metallurgical silicon up to solar grade,” Solar Energy Materials and Solar Cells, vol. 34, no. 1–4, pp. 243–250, 1994. View at Scopus
  8. Y. Kato, K. Hanazawa, H. Baba et al., “Purification of metallurgical grade silicon to solar grade for use in solar cell wafers,” Tetsu-To-Hagane, vol. 86, no. 11, pp. 717–724, 2000. View at Scopus
  9. K. Morita and T. Miki, “Thermodynamics of solar-grade-silicon refining,” Intermetallics, vol. 11, no. 11-12, pp. 1111–1117, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Ikeda and M. Maeda, “Elimination of boron in molten silicon by reactive rotating plasma arc melting,” Materials Transactions, vol. 37, no. 5, pp. 983–987, 1996. View at Scopus
  11. N. Nakamura, H. Baba, Y. Sakaguchi, and Y. Kato, “Boron removal in molten silicon by a steam-added plasma melting method,” Materials Transactions, vol. 45, no. 3, pp. 858–864, 2004. View at Scopus
  12. M. E. Schlesinger, “The thermodynamic properties of phosphorus and solid binary phosphides,” Chemical Reviews, vol. 102, no. 11, pp. 4267–4301, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Miki, K. Morita, and N. Sano, “Thermodynamics of phosphorus in molten silicon,” Metallurgical and Materials Transactions B, vol. 27, no. 6, pp. 937–941, 1996. View at Scopus
  14. A. I. Zaitsev, A. D. Litvina, and N. E. Shelkova, “Thermodynamic properties of Si-P melts,” High Temperature, vol. 39, no. 2, pp. 227–232, 2001. View at Scopus
  15. T. Nagai, H. Sasaki, and M. Maeda, “Thermodynamic study for removal of phosphorus from molten silicon,” T.T. Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization, pp. 431–435, 2012.
  16. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, Pergamon Press, Oxford, UK, 5th edition, 1979.
  17. R. G. Ward, “Evaporative losses during vacuum induction melting of steel,” Journal of the Iron and Steel Institute, vol. 201, pp. 11–15, 1963.
  18. R. Harris and W. G. Davenport, “Vacuum distillation of liquid metals: part I. Theory and experimental study,” Metallurgical Transactions B, vol. 13, no. 4, pp. 581–588, 1982. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Kemmotsu, T. Nagai, and M. Maeda, “Removal rate of phosphorus from molten silicon,” High Temperature Materials and Processes, vol. 30, no. 1-2, pp. 17–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Miyake, T. Hiramatsu, and M. Maeda, “Removal of phosphorus and antimony in silicon by electron beam melting at low vacuum,” Journal of the Japan Institute of Metals, vol. 70, no. 1, pp. 43–46, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Hickman, “Reviewing the evaporation coefficient,” Desalination, vol. 1, no. 1, pp. 13–29, 1966. View at Scopus
  22. K. Hanazawa, N. Yuge, S. Hiwasa, and Y. Kato, “Evaporation of phosphorus in molten silicon with electron beam irradiation method,” Journal of the Japan Institute of Metals, vol. 67, no. 10, pp. 569–574, 2003. View at Scopus
  23. K. Hanazawa, N. Yuge, and Y. Kato, “Evaporation of phosphorus in molten silicon by an electron beam irradiation method,” Materials Transactions, vol. 45, no. 3, pp. 844–849, 2004. View at Scopus
  24. J. C. S. Pires, A. F. B. Braga, and P. R. Mei, “Profile of impurities in polycrystalline silicon samples purified in an electron beam melting furnace,” Solar Energy Materials and Solar Cells, vol. 79, no. 3, pp. 347–355, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. J. C. S. Pires, J. Otubo, A. F. B. Braga, and P. R. Mei, “The purification of metallurgical grade silicon by electron beam melting,” Journal of Materials Processing Technology, vol. 169, no. 1, pp. 16–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Luo, N. Liu, Y. Lu, G. Zhang, and T. Li, “Removal of impurities from metallurgical grade silicon by electron beam melting,” Journal of Semiconductors, vol. 32, no. 3, Article ID 033003, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Jiang, Y. Tan, S. Shi, W. Dong, Z. Gu, and R. Zou, “Removal of phosphorus in molten silicon by electron beam candle melting,” Materials Letters, vol. 78, pp. 4–7, 2012. View at Publisher · View at Google Scholar
  28. P. R. Mei, S. P. Moreira, E. Cardoso, A. D. S. Côrtes, and F. C. Marques, “Purification of metallurgical silicon by horizontal zone melting,” Solar Energy Materials and Solar Cells, vol. 98, pp. 233–239, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Liu, Z. Dong, Y. Zhao et al., “Large scale purification of metallurgical silicon for solar cell by using electron beam melting,” Journal of Crystal Growth, vol. 351, no. 1, pp. 19–22, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Tan, X. Guo, S. Shi, W. Dong, and D. Jiang, “Study on the removal process of phosphorus from silicon by electron beam melting,” Vacuum, vol. 93, pp. 65–70, 2013. View at Publisher · View at Google Scholar
  31. S. Shi, W. Dong, X. Peng, D. Jiang, and Y. Tan, “Evaporation and removal mechanism of phosphorus from the surface of silicon melt during electron beam melting,” Applied Surface Science, vol. 266, pp. 344–349, 2013. View at Publisher · View at Google Scholar
  32. S. Choi, B. Jang, J. Lee, Y. Ahn, W. Yoon, and J. Joo, “Effects of electron beam patterns on melting and refining of silicon for photovoltaic applications,” Renewable Energy, vol. 54, pp. 40–45, 2013. View at Publisher · View at Google Scholar
  33. K. Suzuki, K. Sakaguchi, T. Nakagiri, and N. Sano, “Gaseous removal of phosphorus and boron from molten silicon,” Journal of the Japan Institute of Metals, vol. 54, no. 2, pp. 161–167, 1990. View at Scopus
  34. N. Yuge, K. Hanazawa, K. Nishikawa, and H. Terashima, “Removal of phosphorus, aluminum and calcium by evaporation in molten silicon,” Journal of the Japan Institute of Metals, vol. 61, no. 10, pp. 1086–1093, 1997. View at Scopus
  35. S. Zheng, W. Chen, J. Cai, J. Li, C. Chen, and X. Luo, “Mass transfer of phosphorus in silicon melts under vacuum induction refining,” Metallurgical and Materials Transactions B, vol. 41, no. 6, pp. 1268–1273, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Zheng, T. Abel Engh, M. Tangstad, and X. Luo, “Separation of Phosphorus from silicon by induction vacuum refining,” Separation and Purification Technology, vol. 82, no. 1, pp. 128–137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Zheng, J. Safarian, S. Seok, S. Kim, T. Merete, and X. Luo, “Elimination of phosphorus vaporizing from molten silicon at finite reduced pressure,” Transactions of Nonferrous Metals Society of China, vol. 21, no. 3, pp. 697–702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Safarian and M. Tangstad, “Kinetics and mechanism of phosphorus removal from silicon in vacuum induction refining,” High Temperature Materials and Processes, vol. 31, no. 1, pp. 73–81, 2012. View at Scopus
  39. J. Safarian and M. Tangstad, “Vacuum refining of molten silicon,” Metallurgical and Materials Transactions B, vol. 43, no. 6, pp. 1427–1445, 2012. View at Publisher · View at Google Scholar
  40. X. M. Xue, H. G. Jiang, Z. T. Sui, B. Z. Ding, and Z. Q. Hu, “Influence of phosphorus addition on the surface tension of liquid iron and segregation of phosphorus on the surface of Fe-P alloy,” Metallurgical and Materials Transactions B, vol. 27, no. 1, pp. 71–79, 1996. View at Scopus
  41. X. Peng, W. Dong, Y. Tan, and D. Jiang, “Removal of aluminum from metallurgical grade silicon using electron beam melting,” Vacuum, vol. 86, no. 4, pp. 471–475, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Sun, J. Zhang, H. Wang et al., “Purification of metallurgical grade silicon in an electron beam melting furnace,” Surface & Coating Technology, vol. 228, supplement 1, pp. S67–S71, 2013. View at Publisher · View at Google Scholar
  43. D. Jiang, Y. Tan, S. Shi, W. Dong, Z. Gu, and X. Guo, “Evaporated metal aluminium and calcium removal from directionally solidified silicon for solar cell by electron beam candle melting,” Vacuum, vol. 86, no. 10, pp. 1417–1422, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. M. D. Johnston and M. Barati, “Distribution of impurity elements in slag-silicon equilibria for oxidative refining of metallurgical silicon for solar cell applications,” Solar Energy Materials and Solar Cells, vol. 94, no. 12, pp. 2085–2090, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. M. D. Johnston and M. Barati, “Effect of slag basicity and oxygen potential on the distribution of boron and phosphorus between slag and silicon,” Journal of Non-Crystalline Solids, vol. 357, no. 3, pp. 970–975, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Wu, W. Ma, Y. Li, B. Yang, D. Liu, and Y. Dai, “Thermodynamic behavior and morphology of impurities in metallurgical grade silicon in process of O2 blowing,” Transactions of Nonferrous Metals Society of China, vol. 23, no. 1, pp. 260–265, 2013. View at Publisher · View at Google Scholar
  47. T. Yoshikawa and K. Morita, “Refining of silicon during its solidification from a Si-Al melt,” Journal of Crystal Growth, vol. 311, no. 3, pp. 776–779, 2009. View at Publisher · View at Google Scholar · View at Scopus