Table 2: Previous research on removal of P by EB melting.

EB power/kWWeight of Si sample/kg (or supply rate)Temperature/KChamber pressure/PaP content in ppm (time)Apparent mass transfer coefficient, /m s−1

Ikeda and Maeda (1992) [6]3.8~6.50.051867~1967 38~45→ 3 (900 s)
Hanazawa et al. (2003, 2004) [22, 23]
 (i) Batch process in laboratory scale30~100 1.2~6.61950~23001.3~ 30→0.05-0.06 (2200 s)
 (ii) Batch process in industrial scale190, 210452.7~
 (iii) Continuous process in laboratory scale80 2~12 kgh−1 (supply rate)1.3~ 25–30→0.3 (4600 s)
 (iv) Continuous process in industrial scale220, 25016–70 kgh−1 (supply rate)1.3~ 25–30→0.1 (4200 s)
Pires et al. (2003) [24]
 Observation of segregation14–170.28 (powder)NA ?→0.28–5.5 (1200 s)
Pires et al. (2005) [25]15–170.28 (powder)NA 23→0.41 (1200 s)
0.28 (massive)38→0.39 (1200 s)
Miyake et al. (2006) [20]
 Glow discharge EB2.6~4.8 0.0418505~7140~230→1 (3600 s)
Kemmotsu et al. (2011) [19]
 (i) Water-cooled Cu crucible2.60.04186010−2 87→2.9 (1800 s) (1860 K)
 (ii) Graphite crucible2.60.041980 10−2166→0.9 (1800 s)
 (iii) Graphite crucible4.80.04252010−262→5.2 (180 s)
 (iv) Stirred by Ar bubbling37→10 (90 s)
 (v) 0.1% O2-H2 blowing37→9.4 (90 s)
 (vi) 0.1% O2-H2 bubbling37→1.5 (180 s)
 (vii) Glow discharge EB4.80.0418601106→5.2 (900 s)
Luo et al. (2011) [26]10–150.4NA2.5~ 20→1 (1200 s)
Jiang et al. (2012) [27]
 Candle melting60.7NA 144→ 60 (300 s)
Mei et al. (2012) [28]11~130.2NA10−350→1.8 (20 min melting followed by zone melting)
Liu et al. (2012) [29]
 Industrial scale350500NA10−315→0.07
Tan et al. (2013) [30]21 0.3200110−316→0.16 (1400 s)
90.319410.5~ (1941 K)
Shi et al. (2013) [31]151964 (1964 K)
21 20513320→7 (1920 s) (2051 K)
Choi et al. (2013) [32]120.25 34→4.5 (2640 s)