About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 932636, 6 pages
http://dx.doi.org/10.1155/2013/932636
Research Article

Nanofibre Electrospinning Poly(vinyl alcohol) and Cellulose Composite Mats Obtained by Use of a Cylindrical Electrode

1Institute of Textile Materials Technologies and Design, Riga Technical University, Riga 1048, Latvia
2Laboratory of Biomass Eco-Efficient Conversation, Latvian State Institute of Wood Chemistry, Riga 1006, Latvia
3Department of Textile Technology, Kaunas University of Technology, 51424 Kaunas, Lithuania

Received 30 May 2013; Revised 6 August 2013; Accepted 14 August 2013

Academic Editor: Yu Dong

Copyright © 2013 Anna Sutka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. F. Spivak, Y. A. Dzenis, and D. H. Reneker, “Model of steady state jet in the electrospinning process,” Mechanics Research Communications, vol. 27, no. 1, pp. 37–42, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Theron, E. Zussman, and A. L. Yarin, “Electrostatic field-assisted alignment of electrospun nanofibres,” Nanotechnology, vol. 12, no. 3, pp. 384–390, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Huang, K. Nagapundi, and E. L. Chaikof, “Engineered collagen-PEO nanofibers and fabrics,” Journal of Biomaterials Science Polymer Edition, vol. 12, no. 9, pp. 979–993, 2001.
  4. X. Wang, C. Drew, S.-H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, “Electrospun nanofibrous membranes for highly sensitive optical sensors,” Nano Letters, vol. 2, no. 11, pp. 1273–1275, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, “Electrospun nanofibrous structure: a novel scaffold for tissue engineering,” Journal of Biomedical Materials Research, vol. 60, no. 4, pp. 613–621, 2002.
  6. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, “Electrospinning of collagen nanofibers,” Biomacromolecules, vol. 3, no. 2, pp. 232–238, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Fu and L. Gu, “Composite fibres from poly(vinyl alcohol) and poly(vinyl alcohol)-functionalized multiwalled carbon nanotubes,” Journal of Applied Polymer Science, vol. 128, no. 2, pp. 1044–1053, 2013. View at Publisher · View at Google Scholar
  8. P. Ahmadpoor, A. S. Nateri, and V. Motaghitalab, “The optical properties of PVA/TiO2 composite nanofibres,” Journal of Applied Polymer Science, vol. 130, no. 1, pp. 78–85, 2013. View at Publisher · View at Google Scholar
  9. C. Shao, H.-Y. Kim, J. Gong, B. Ding, D.-R. Lee, and S.-J. Park, “Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning,” Materials Letters, vol. 57, no. 9-10, pp. 1579–1584, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Ignatova, K. Starbova, N. Markova, N. Manolova, and I. Rashkov, “Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly(vinyl alcohol),” Carbohydrate Research, vol. 341, no. 12, pp. 2098–2107, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S.-H. Teng, E.-J. Lee, P. Wang, and H.-E. Kim, “Collagen/hydroxyapatite composite nanofibers by electrospinning,” Materials Letters, vol. 62, no. 17-18, pp. 3055–3058, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. S. Peresin, Y. Habibi, A.-H. Vesterinen, O. J. Rojas, J. J. Pawlak, and J. V. Seppälä, “Effect of moisture on electrospun nanofiber composites of poly(vinyl alcohol) and cellulose nanocrystals,” Biomacromolecules, vol. 11, no. 9, pp. 2471–2477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. S. Peresin, Y. Habibi, J. O. Zoppe, J. J. Pawlak, and O. J. Rojas, “Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization,” Biomacromolecules, vol. 11, no. 3, pp. 674–681, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Zhou and Q. Wu, Recent Development in Applications of Cellulose Nanocrystals for Advanced Polymer-Based Nanocomposites by Novel Fabrication Strategies, Nanocrystals—Synthesis, Characterization and Applications, 2012, Edited by Sudheer Neralla.
  15. H. Fong, I. Chun, and D. H. Reneker, “Beaded nanofibers formed during electrospinning,” Polymer, vol. 40, no. 16, pp. 4585–4592, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Niu, J. Zhang, Z. Xie, X. Wang, and T. Lin, “Preparation, structure and supercapacitance of bonded carbon nanofiber electrode materials,” Carbon, vol. 49, no. 7, pp. 2380–2388, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Huang, Y. Tang, X. Liu et al., “Electrospinning of nanofibres with parallel line surface texture for improvement of nerve cell growth,” Soft Matter, vol. 7, no. 22, pp. 10812–10817, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Niu and T. Lin, “Fiber generators in needleless electrospinning,” Journal of Nanomaterials, vol. 2012, Article ID 725950, 13 pages, 2012. View at Publisher · View at Google Scholar
  19. Elmarco, “Nanospider Technology,” http://www.elmarco.cz/technology/nanospider%3Csup%3Etm%3Csup%3E-technology/.
  20. S. Kukle, J. Gravitis, and A. Putnina, “Processing parameters influence on disintegration intensity of technical hemp fibres,” Journal of Biobased Materials and Bioenergy, vol. 6, no. 4, pp. 440–448, 2012. View at Publisher · View at Google Scholar
  21. A. Putnina, S. Kukle, and J. Gravitis, “Steam explosion as the pretreatment method of lignocellulosic biomass,” Scientific Journal of RTU, vol. 7, pp. 80–83, 2012.
  22. M. Heitz, E. Capek-Menard, P. G. Keoberle et al., “Fractionation of populus tremuloides at the pilot plant scale: optimization of steam pretreatment conditions using the STAKE II technology,” Bioresource Technology, vol. 35, no. 1, pp. 23–32, 1991. View at Scopus
  23. Q. Cheng, Fabrication and analysis of polymeric nanocomposites from cellulose fibrils [Ph.D. dissertation], University of Tennessee, 2007.
  24. E. Adomavičiūtė, M. Adomavičienė, R. Milašius, M. Leskovšek, and A. Demšar, Magic World of Textiles Book, pp. 37–41, Proceedings of the 4rd ITC & DC, 2008.
  25. D. Wu, X. Huang, X. Lai, D. Sun, and L. Lin, “High throughput tip-less electrospinning via a circular cylindrical electrode,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 7, pp. 4221–4226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Niu, X. Wang, and T. Lin, Needleless Electrospinning: Developments and Performances, Nanofibres—Production, Properties and Functional Applications, 2011, Edited by T. Lin.