About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 941617, 7 pages
http://dx.doi.org/10.1155/2013/941617
Research Article

Improvement of Mechanical Properties of Noil Hemp Fiber Reinforced Polypropylene Composites by Resin Modification and Fiber Treatment

1Centre of Excellence in Engineered Fibre Composites, University of Southern Queensland, Toowoomba, QLD 4350, Australia
2Special High Value Biomass Industry and Technology Innovation Strategic Alliance, Beijing 100082, China
3The Research Centre of China-Hemp Materials, Beijing 100082, China

Received 31 May 2013; Revised 15 August 2013; Accepted 23 August 2013

Academic Editor: Hazizan Md Akil

Copyright © 2013 Zili Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Asokan, M. Osmani, and A. D. F. Price, “Assessing the recycling potential of glass fibre reinforced plastic waste in concrete and cement composites,” Journal of Cleaner Production, vol. 17, no. 9, pp. 821–829, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. M. J. John and S. Thomas, “Biofibres and biocomposites,” Carbohydrate Polymers, vol. 71, no. 3, pp. 343–364, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. F. P. La Mantia and M. Morreale, “Green composites: a brief review,” Composites Part A, vol. 42, no. 6, pp. 579–588, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. N. Monteiro, F. P. D. Lopes, A. S. Ferreira, and D. C. O. Nascimento, “Natural-fiber polymer-matrix composites: cheaper, tougher, and environmentally friendly,” JOM, vol. 61, no. 1, pp. 17–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. K. G. Satyanarayana, G. G. C. Arizaga, and F. Wypych, “Biodegradable composites based on lignocellulosic fibers: an overview,” Progress in Polymer Science, vol. 34, no. 9, pp. 982–1021, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Y. Cheung, M. P. Ho, K. T. Lau, F. Cardona, and D. Hui, “Natural fibre-reinforced composites for bioengineering and environmental engineering applications,” Composites Part B, vol. 40, no. 7, pp. 655–663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. S. Huda, L. T. Drzal, D. Ray, A. K. Mohanty, and M. Misra, “Natural-fibre composites in the automotive sector,” in Properties and Performance of Natural-Fibre Composites, K. L. Pickering, Ed., pp. 256–261, CRC Press, Washington, DC, USA, 2008.
  8. D. Puglia, J. Biagiotti, and J. M. Kenny, “A review on natural fibre-based composites. Part II: application of natural reinforcements in composite materials for automotive industry,” Journal of Natural Fibers, vol. 1, no. 3, pp. 23–65, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. M. P. Ho, J. H. WangH Lee, C. K. Ho, K. T. Lau, J. S. Leng, and D. Hui, “Critical factors on manufacturing processes of natural fibre composites,” Composites Part B, vol. 43, no. 8, pp. 3549–3562, 2012. View at Publisher · View at Google Scholar
  10. N. L. Moigne, M. V. D. Oever, and T. Budtova, “A statistical analysis of fibre size and shape distribution after compounding in composites reinforced by natural fibres,” Composites Part A, vol. 42, no. 10, pp. 1542–1550, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Etaati, H. Wang, S. Pather, Z. L. Yan, and S. Mehdizadeh A, “3D X-ray microtomography study on fibre breakage in noil hemp fibre reinforced polypropylene composites,” Composites Part B, vol. 50, pp. 239–246, 2013. View at Publisher · View at Google Scholar
  12. A. Alemdar, H. Zhang, M. Sain, G. Cescutti, and J. Müssig, “Determination of fiber size distributions of injection moulded polypropylene/natural fibers using X-ray microtomography,” Advanced Engineering Materials, vol. 10, no. 1-2, pp. 126–130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. T. T. Doan, S. L. Gao, and E. Mäder, “Jute/polypropylene composites I. Effect of matrix modification,” Composites Science and Technology, vol. 66, no. 7-8, pp. 952–963, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Qian, L. Zhu, J. Zhang, and R. S. Whitehouse, “Comparison of different nucleating agents on crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerates),” Journal of Polymer Science B, vol. 45, no. 13, pp. 1564–1577, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. T. J. Keener, R. K. Stuart, and T. K. Brown, “Maleated coupling agents for natural fibre composites,” Composites Part A, vol. 35, no. 3, pp. 357–362, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. L. Thomason, “Why are natural fibres failing to deliver on composite performance?” in Proceedings of the 17th International Conference on Composite Materials (ICCM '17), Edinburgh, UK, July 2009. View at Scopus
  17. X. Li, L. G. Tabil, and S. Panigrahi, “Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review,” Journal of Polymers and the Environment, vol. 15, no. 1, pp. 25–33, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. George, M. S. Sreekala, and S. Thomas, “A review on interface modification and characterization of natural fiber reinforced plastic composites,” Polymer Engineering and Science, vol. 41, no. 9, pp. 1471–1485, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Yuan, K. Jayaraman, and D. Bhattacharyya, “Effects of plasma treatment in enhancing the performance of woodfibre-polypropylene composites,” Composites Part A, vol. 35, no. 12, pp. 1363–1374, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. D. F. Caulfield, J. A. Koutsky, and D. T. Quillen, “Cellulose/polypropylene composites: the use of AKD and ASA sizes as compatibilizers,” in Wood-Fiber/Polymer Composites: Fundamental Concepts, Processes, and Material Options, pp. 128–134, 1993.
  21. B. Nyström, R. Joffe, and R. Långström, “Microstructure and strength of injection molded natural fibre composites,” Journal of Reinforced Plastics and Composites, vol. 26, pp. 579–599, 2007.
  22. G. W. Beckermann, K. L. Pickering, and N. J. Foreman, “Evaluation of the mechanical properties of injection moulded hemp fibre reinforced polypropylene composites,” Advanced Materials Research, vol. 29-30, pp. 303–306, 2007. View at Scopus
  23. J. George, M. S. Sreekala, and S. Thomas, “A review on interface modification and characterization of natural fiber reinforced plastic composites,” Polymer Engineering and Science, vol. 41, no. 9, pp. 1471–1485, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Niu, B. Liu, X. Wei, X. Wang, and J. Yang, “Study on mechanical properties and thermal stability of polypropylene/hemp fiber composites,” Journal of Reinforced Plastics and Composites, vol. 30, no. 1, pp. 36–44, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. Y. Sun, H. S. Han, and G. C. Dai, “Mechanical properties of injection-molded natural fiber-reinforced polypropylene composites: formulation and compounding processes,” Journal of Reinforced Plastics and Composites, vol. 29, no. 5, pp. 637–650, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Mutjé, M. E. Vallejos, J. Gironès et al., “Effect of maleated polypropylene as coupling agent for polypropylene composites reinforced with hemp strands,” Journal of Applied Polymer Science, vol. 102, no. 1, pp. 833–840, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. http://www.in-cosmetics.com/__novadocuments/2234.
  28. P. A. Sreekumar, R. Saiah, J. M. Saiter et al., “Effect of chemical treatment on dynamic mechanical properties of sisal fiber-reinforced polyester composites fabricated by resin transfer molding,” Composite Interfaces, vol. 15, no. 2-3, pp. 263–279, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Chandra, S. P. Singh, and K. Gupta, “Damping studies in fiber-reinforced composites: a review,” Composite Structures, vol. 46, no. 1, pp. 41–51, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. I. Ghasemi and M. Farsi, “Interfacial behaviour of wood plastic composite: effect of chemical treatment on wood fibres,” Iranian Polymer Journal, vol. 19, no. 10, pp. 811–818, 2010. View at Scopus
  31. M. Tajvidi, R. H. Falk, and J. C. Hermanson, “Effect of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites studied by dynamic mechanical analysis,” Journal of Applied Polymer Science, vol. 101, no. 6, pp. 4341–4349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Kubat, M. Rigdahl, and M. Welander, “Characterization of interfacial interactions in high density polyethylene filled with glass spheres using dynamic-mechanical analysis,” Journal of Applied Polymer Science, vol. 39, no. 7, pp. 1527–1539, 1990. View at Publisher · View at Google Scholar · View at Scopus