About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 947571, 8 pages
http://dx.doi.org/10.1155/2013/947571
Research Article

Blast-Resistant Improvement of Sandwich Armor Structure with Aluminum Foam Composite

School of Automotive Engineering, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China

Received 30 May 2013; Accepted 26 August 2013

Academic Editor: Bin Zhang

Copyright © 2013 Shu Yang and Chang Qi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. A. Gama, T. A. Bogetti, B. K. Fink et al., “Aluminum foam integral armor: a new dimension in armor design,” Composite Structures, vol. 52, no. 3-4, pp. 381–395, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Sriram, U. K. Vaidya, and J.-E. Kim, “Blast impact response of aluminum foam sandwich composites,” Journal of Materials Science, vol. 41, no. 13, pp. 4023–4039, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Schenker, I. Anteby, E. Nizri et al., “Foam-protected reinforced concrete structures under impact: experimental and numerical studies,” Journal of Structural Engineering, vol. 131, no. 8, pp. 1233–1242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Monti, “Normal shock wave reflection on deformable solid walls,” Meccanica, vol. 5, no. 4, pp. 285–296, 1970. View at Publisher · View at Google Scholar · View at Scopus
  5. H.-S. Kim, “New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency,” Thin-Walled Structures, vol. 40, no. 4, pp. 311–327, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Zhang and G. D. Cheng, “A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns,” International Journal of Impact Engineering, vol. 34, no. 11, pp. 1739–1752, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Aktay, B.-H. Kröplin, A. K. Toksoy, and M. Güden, “Finite element and coupled finite element/smooth particle hydrodynamics modeling of the quasi-static crushing of empty and foam-filled single, bitubular and constraint hexagonal- and square-packed aluminum tubes,” Materials & Design, vol. 29, no. 5, pp. 952–962, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. V. S. Deshpande and N. A. Fleck, “Isotropic constitutive models for metallic foams,” Journal of the Mechanics and Physics of Solids, vol. 48, no. 6, pp. 1253–1283, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. A. G. Hanssen, Y. Girard, L. Olovsson, T. Berstad, and M. Langseth, “A numerical model for bird strike of aluminium foam-based sandwich panels,” International Journal of Impact Engineering, vol. 32, no. 7, pp. 1127–1144, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. O. Hallquist, LS-DYNA Keyword User's Manual, Livermore Software Technology Corporation, Livermore, Calif, USA, 2007.
  11. M. V. D. Horst, C. Simms, R. V. Maasdam, and P. Leerdam, “Occupant lower leg injury assessment in landmine detonations under a vehicle,” in Proceedings of the IUTAM Symposium on Biomechanics of Impact: from Fundamental Insights to Applications, Dublin, Ireland, 2005.
  12. K. Williams, S. Mclennan, R. Durocher, B. S. Jean, and J. Tremblay, “Validation of a loading model for simulating blast mine effects on armored vehicles,” in Proceedings of the 7th International LS-DYNA Users Conference, 2002.
  13. Y. P. Dong and Z. H. Lu, “Analysis and evaluation of an anti-shock seat with a multi-stage non-linear suspension for a tactical vehicle under a blast load,” Proceedings of the Institution of Mechanical Engineers D, vol. 226, pp. 1037–1048, 2012.
  14. C. N. Kingery and G. Bulmash, “Airblast parameters from TNT spherical air burst and hemispherical surface burst,” Tech. Rep. ARBL-TR-02555, US Army BRL, Aberdeen Proving Ground, Md, USA, 1984.
  15. M. S. Hoo Fatt and H. Surabhi, “Blast resistance and energy absorption of foam-core cylindrical sandwich shells under external blast,” Composite Structures, vol. 94, pp. 3174–3185, 2012.