About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 976373, 8 pages
http://dx.doi.org/10.1155/2013/976373
Research Article

Impact Toughness and Ductility Enhancement of Biodegradable Poly(lactic acid)/Poly(ε-caprolactone) Blends via Addition of Glycidyl Methacrylate

1Chemistry Department, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Radiation Processing Technology Department, Malaysia Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia

Received 9 April 2013; Revised 11 June 2013; Accepted 11 June 2013

Academic Editor: Wen-Hua Sun

Copyright © 2013 Wei Kit Chee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kumar, S. Mohanty, S. K. Nayak, and M. Rahail Parvaiz, “Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites,” Bioresource Technology, vol. 101, no. 21, pp. 8406–8415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. C. L. Simões, J. C. Viana, and A. M. Cunha, “Mechanical properties of poly(ε-caprolactone) and poly(lactic acid) blends,” Journal of Applied Polymer Science, vol. 112, no. 1, pp. 345–352, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. O. Martin and L. Avérous, “Poly(lactic acid): plasticization and properties of biodegradable multiphase systems,” Polymer, vol. 42, no. 14, pp. 6209–6219, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. L.-T. Lim, R. Auras, and M. Rubino, “Processing technologies for poly(lactic acid),” Progress in Polymer Science (Oxford), vol. 33, no. 8, pp. 820–852, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Madhavan Nampoothiri, N. R. Nair, and R. P. John, “An overview of the recent developments in polylactide (PLA) research,” Bioresource Technology, vol. 101, no. 22, pp. 8493–8501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. C.-H. Ho, C.-H. Wang, C.-I. Lin, and Y.-D. Lee, “Synthesis and characterization of TPO-PLA copolymer and its behavior as compatibilizer for PLA/TPO blends,” Polymer, vol. 49, no. 18, pp. 3902–3910, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Hassouna, J.-M. Raquez, F. Addiego, P. Dubois, V. Toniazzo, and D. Ruch, “New approach on the development of plasticized polylactide (PLA): grafting of poly(ethylene glycol) (PEG) via reactive extrusion,” European Polymer Journal, vol. 47, no. 11, pp. 2134–2144, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Su, Q. Li, Y. Liu, G.-H. Hu, and C. Wu, “Compatibility and phase structure of binary blends of poly(lactic acid) and glycidyl methacrylate grafted poly(ethylene octane),” European Polymer Journal, vol. 45, no. 8, pp. 2428–2433, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. W. Park and S. S. Im, “Phase behavior and morphology in blends of poly(L-lactic acid) and poly(butylene succinate),” Journal of Applied Polymer Science, vol. 86, no. 3, pp. 647–655, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. M. E. Broz, D. L. VanderHart, and N. R. Washburn, “Structure and mechanical properties of poly(D,L-lactic acid)/poly(ε-caprolactone) blends,” Biomaterials, vol. 24, no. 23, pp. 4181–4190, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Jiang, M. P. Wolcott, and J. Zhang, “Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends,” Biomacromolecules, vol. 7, no. 1, pp. 199–207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. N. López-Rodríguez, A. López-Arraiza, E. Meaurio, and J. R. Sarasua, “Crystallization, morphology, and mechanical behavior of polylactide/poly(ε-caprolactone) blends,” Polymer Engineering & Science, vol. 46, no. 9, pp. 1299–1308, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Wu, Y. Zhang, L. Yuan, M. Zhang, and W. Zhou, “Viscoelastic interfacial properties of compatibilized poly(ε- caprolactone)/polylactide blend,” Journal of Polymer Science B: Polymer Physics, vol. 48, no. 7, pp. 756–765, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J.-T. Yeh, C.-J. Wu, C.-H. Tsou et al., “Study on the crystallization, miscibility, morphology, properties of poly(lactic acid)/poly(ε-caprolactone) blends,” Polymer—Plastics Technology and Engineering, vol. 48, no. 6, pp. 571–578, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Harada, T. Ohya, K. Iida, H. Hayashi, K. Hirano, and H. Fukuda, “Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent,” Journal of Applied Polymer Science, vol. 106, no. 3, pp. 1813–1820, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Zhang, Q. Wang, J. Ren, and L. Wang, “Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent,” Journal of Materials Science, vol. 44, no. 1, pp. 250–256, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Xu, Z. Tang, and J. Zhu, “Synthesis of polylactide-graft-glycidyl methacrylate graft copolymer and its application as a coupling agent in polylactide/bamboo flour biocomposites,” Journal of Applied Polymer Science, vol. 125, pp. E622–E627, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. H.-T. Liao and C.-S. Wu, “Preparation and characterization of ternary blends composed of polylactide, poly(ε-caprolactone) and starch,” Materials Science and Engineering A, vol. 515, no. 1-2, pp. 207–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. F. Kim, C. N. Choi, Y. D. Kim, K. Y. Lee, and M. S. Lee, “Compatibilization of immiscible poly(l-lactide) and low density polyethylene blends,” Fibers and Polymers, vol. 5, no. 4, pp. 270–274, 2004. View at Scopus