About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2014 (2014), Article ID 160258, 9 pages
http://dx.doi.org/10.1155/2014/160258
Research Article

Surface Hardening of Ti-15V-3Al-3Cr-3Sn Alloy after Cyclic Hydrogenation and Subsequent Solution Treatment

1Institute of Materials Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan
2Department of Materials Engineering, Tatung University, Taipei 10451, Taiwan

Received 24 November 2013; Accepted 9 February 2014; Published 12 March 2014

Academic Editor: Ming-Xing Zhang

Copyright © 2014 Chia-Po Hung et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. F. Smith, Structure and Properties of Engineering Alloys, McGraw-Hill, New York, NY, USA, 1st edition, 1981.
  2. I. J. Polmear, Light Alloys, Edward Arnold, London, UK, 1st edition, 1981.
  3. E. W. Collings, The Physical Metallurgy of Titanium Alloys, ASM International, Metals Park, Ohio, USA, 1st edition, 1984.
  4. M. L. Wasz, F. R. Brotzen, R. B. McLellan, and A. J. Griffin Jr., “Effect of oxygen and hydrogen on mechanical properties of commercial purity titanium,” International Materials Reviews, vol. 41, no. 1, pp. 1–12, 1996. View at Scopus
  5. D. Eliezer, E. Tal-Gutelmacher, C. E. Cross, and Th. Boellinghaus, “Hydrogen absorption and desorption in a duplex-annealed Ti-6Al-4V alloy during exposure to different hydrogen-containing environments,” Materials Science and Engineering A, vol. 433, no. 1-2, pp. 298–304, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. T. I. Wu and J. C. Wu, “Effects of cathodic charging and subsequent solution treating parameters on the hydrogen redistribution and surface hardening of Ti-6Al-4V alloy,” Journal of Alloys and Compounds, vol. 466, no. 1-2, pp. 153–159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. C. B. Zhang, Q. Kang, Z. H. Lai, and R. Ji, “The microstructural modification, lattice defects and mechanical properties of hydrogenated/dehydrogenated α-Ti,” Acta Materialia, vol. 44, no. 3, pp. 1077–1084, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Zhang and S. Q. Zhang, “Hydrogenation characteristics of Ti-6Al-4V cast alloy and its microstructural modification by hydrogen treatment,” International Journal of Hydrogen Energy, vol. 22, no. 2-3, pp. 161–168, 1997. View at Scopus
  9. H. Yoshimura, “Mezzoscopic grain refinement and improved mechanical properties of titanium materials by hydrogen treatments,” International Journal of Hydrogen Energy, vol. 22, no. 2-3, pp. 145–150, 1997. View at Scopus
  10. O. N. Senkov and F. H. Froes, “Thermohydrogen processing of titanium alloys,” International Journal of Hydrogen Energy, vol. 24, no. 6, pp. 565–576, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. J. C. Wu and T. I. Wu, “Influences of the cyclic electrolytic hydrogenation and subsequent solution treatment on the hydrogen absorption and evolution of β-solution treated Ti-6Al-4V alloy,” International Journal of Hydrogen Energy, vol. 33, no. 20, pp. 5651–5660, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. C. T. Liu, T. I. Wu, and J. K. Wu, “Formation of nanocrystalline structure of Ti-6Al-4V alloy by cyclic hydrogenation-dehydrogenation treatment,” Materials Chemistry and Physics, vol. 110, no. 2-3, pp. 440–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Furuhara, “Role of defects on microstructure development of beta titanium alloys,” Metals and Materials International, vol. 6, no. 3, pp. 221–224, 2000. View at Scopus
  14. R. W. Schutz and L. C. Covington, “Effect of oxide films on the corrosion resistance of titanium,” Corrosion, vol. 37, no. 10, pp. 585–591, 1981. View at Scopus
  15. T. I. Wu, C. T. Liu, and J. K. Wu, “Use of thiourea to inhibit the incorporation of hydrogen in Ti and Ti-6Al-4V alloy,” Materials Letters, vol. 30, no. 5-6, pp. 377–383, 1997. View at Scopus
  16. T. I. Wu and J. K. Wu, “The effects of chemical additives on the hydrogen uptake behavior of Ti-6Al-4V alloy,” Materials Chemistry and Physics, vol. 80, no. 1, pp. 150–156, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley, Reading, Mass, USA, 2nd edition, 1978.
  18. C.-H. Liao, Effects of cyclic hydrogenation and subsequent solution treatment on the hydrogen distribution of MA and BST CP-Ti [M.S. thesis], Tatung University, Taipei, Taiwan, 2009.
  19. J. W. Zhao, H. Ding, Y. R. Zhong, and C. S. Lee, “Effect of thermo hydrogen treatment on lattice defects and microstructure refinement of Ti6Al4V alloy,” International Journal of Hydrogen Energy, vol. 35, no. 12, pp. 6448–6454, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. W. J. He, S. H. Zhang, H. W. Song, and M. Cheng, “Hydrogen-induced hardening and softening of a beta-titanium alloy,” Scripta Materialia, vol. 61, no. 1, pp. 16–19, 2009. View at Publisher · View at Google Scholar · View at Scopus