About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2014 (2014), Article ID 514036, 8 pages
http://dx.doi.org/10.1155/2014/514036
Review Article

A Review of the Flammability Factors of Kenaf and Allied Fibre Reinforced Polymer Composites

Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

Received 25 September 2013; Accepted 27 January 2014; Published 15 April 2014

Academic Editor: Md Enamul Hoque

Copyright © 2014 C. H. Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Shaw, “A review of smoke and potential in-flight fire events in 1999,” Tech. Rep. Doc 185, Society of Automotive Engineers, Washington, DC, USA, 2000.
  2. A. K. Chaturvedi, D. R. Smith, and D. V. Canfield, “Blood carbon monoxide and hydrogen cyanide concentrations in the fatalities of fire and non-fire associated civil aviation accidents, 1991–1998,” Forensic Science International, vol. 121, no. 3, pp. 183–188, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. Boeing, Statistical Summary of Commercial Jet Airplane Accidents: Worldwide Operations 1959–2004, 2005.
  4. Flight Safety Foundation, Aviation Safety Network on 24th May 2013, http://www.aviation-safety.net/database/.
  5. E. R. Galea and N. C. Markatos, “A review of mathematical modelling of aircraft cabin fires,” Applied Mathematical Modelling, vol. 11, no. 3, pp. 162–176, 1987. View at Scopus
  6. TheGuardianNews, “India Jet Crash Leaves More Than 150 Dead in Mangalore,” 2013, http://www.guardian.co.uk/world/2010/may/22/india-budget-airline-jet-deaths.
  7. Boeing Aero, “Flight and cabin crew response to in-flight smoke,” 2013, http://www.boeing.com/commerial/aeromagazine/aero_14/inflight_story.html.
  8. T. Potter, M. Lavado, and C. Pellon, “Methods for characterizing arc fault signatures in aerospace applications, Texas instruments,” 2013, http://www.sensata.com/download/AgingAircraftConf-Sept2003.pdf.
  9. P. J. Herrera-Franco and A. Valadez-González, “Mechanical properties of continuous natural fibre-reinforced polymer composites,” Composites Part A: Applied Science and Manufacturing, vol. 35, no. 3, pp. 339–345, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. H. M. Akil, M. F. Omar, A. A. M. Mazuki, S. Safiee, Z. A. M. Ishak, and A. Abu Bakar, “Kenaf fiber reinforced composites: a review,” Materials and Design, vol. 32, no. 8-9, pp. 4107–4121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Summerscales, N. P. J. Dissanayake, A. S. Virk, and W. Hall, “A review of bast fibres and their composites. Part 1—fibres as reinforcements,” Composites Part A: Applied Science and Manufacturing, vol. 41, no. 10, pp. 1329–1335, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. E. McIntyre, The Chemistry of Fibres, 6, Edward Arnold, 2009.
  13. M. M. Davoodi, S. M. Sapuan, D. Ahmad, A. Ali, A. Khalina, and M. Jonoobi, “Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam,” Materials and Design, vol. 31, no. 10, pp. 4927–4932, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. A. Fuwape, “Paper from kenaf fibre,” Bioresource Technology, vol. 43, no. 2, pp. 113–115, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. J. S. Han, W. Kim, and R. M. Rowell, “Chemical and physical properties of kenaf as a function of growth,” in Proceedings of the 7th Annual International Kenaf Association Conference, pp. 63–83, Irving, Tex, USA, 1995.
  16. A. F. Kador, C. Karlgren, and H. Verwest, “Kenaf—a fast growing fibre source for papermaking,” Tappi Journal, vol. 73, no. 11, pp. 205–209, 1990.
  17. M. S. Sajab, C. H. Chia, S. Zakaria et al., “Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution,” Bioresource Technology, vol. 102, no. 15, pp. 7237–7243, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Izran, A. Zaidon, A. M. A. Rashid et al., “Fire propagation and strength performance of fire retardant-treated Hibiscus cannabinus particleboard,” Asian Journal of Applied Sceinces, vol. 2, no. 5, pp. 446–455, 2009.
  19. T. Seller Jr., G. D. Miller, and M. J. Fuller, “Kenaf core as a board raw material,” Forest Products Journal, vol. 43, no. 7-8, pp. 69–71, 1993.
  20. C. S. Taylor, KenAf as a New Annual Fibre Source for industrial Uses: General Economic and environmental Aspects, vol. 13, Kenaf International, KI Pub, McAllen, Tex, USA, 1992.
  21. T. Nishino, K. Hirao, M. Kotera, K. Nakamae, and H. Inagaki, “Kenaf reinforced biodegradable composite,” Composites Science and Technology, vol. 63, no. 9, pp. 1281–1286, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Baillie, Green Composites: Polymer Composites and the Environment, CRC Press, Woodhead Publishing, Cambridge, UK, 2004.
  23. G. Fisher, “Availability of kenaf fibres for the US paper industry,” in Proceedings of the Pulping Conference, pp. 91–94, 1994.
  24. D. Rouison, M. Sain, and M. Couturier, “Resin transfer molding of natural fiber reinforced composites: cure simulation,” Composites Science and Technology, vol. 64, no. 5, pp. 629–644, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. N. C. Kuchinda, W. B. Ndahi, S. T. O. Lagoke, and M. K. Ahmed, “The effects of nitrogen and period of weed interference on the fibre yield of kenaf (Hisbiscus cannabinus L.) in the northern Guinea Savanna of Nigeria,” Crop Protection, vol. 20, no. 3, pp. 229–235, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. T. B. T. Lam and K. Liyama, “Structural details of kenaf cell walls and fixation of carbon dioxide,” in Proceedings of the Abstract of the 2000 /International Kenaf Symposium, vol. 14, 2000.
  27. B. F. W. Rogowski, “The fire propagation test: its development and application,” Fire Research Technical Paper 25, H. M. S. O., London, UK, 1970.
  28. A. Tewarson, “Flammability parameters of materials: ignition, combustion and fire propagation,” Journal of Fire Sciences, vol. 12, pp. 329–355, 1994.
  29. N. M. Julkapli and H. M. Akil, “Thermal properties of kenaf-filled chitosan biocomposites,” Polymer—Plastics Technology and Engineering, vol. 49, no. 2, pp. 147–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. A. A. M. Mazuki, H. M. Akil, S. Safiee, Z. A. M. Ishak, and A. A. Bakar, “Degradation of dynamic mechanical properties of pultruded kenaf fiber reinforced composites after immersion in various solutions,” Composites Part B: Engineering, vol. 42, no. 1, pp. 71–76, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Qu, A. Wirsén, and A.-C. Albertsson, “Effect of lactic/glycolic acid side chains on the thermal degradation kinetics of chitosan derivatives,” Polymer, vol. 41, no. 13, pp. 4841–4847, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Kandola, “Nanocomposites, Fire Retardant Materials,” A. R. Horrocks, Ed., Woodhead Publishing, Cambridge, UK, 2000.
  33. Y. A. El-Shekeil, S. M. Sapuan, K. Abdan, and E. S. Zainudin, “Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites,” Materials and Design, vol. 40, pp. 299–303, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. N. Azwa, B. F. Yousif, A. C. Manalo, and W. Karunasena, “A review on the degradability of polymeric composites base on natural fibres,” Materals and Design, vol. 47, pp. 424–442, 2013.
  35. M. J. John, C. Bellmann, and R. D. Anandjiwala, “Kenaf-polypropylene composites: effect of amphiphilic coupling agent on surface properties of fibres and composites,” Carbohydrate Polymers, vol. 82, no. 3, pp. 549–554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. D. De Britto and S. P. Campana-Filho, “A kinetic study on the thermal degradation of N,N,N-trimethylchitosan,” Polymer Degradation and Stability, vol. 84, no. 2, pp. 353–361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Borysiak, D. Paukszta, and M. Helwig, “Flammability of wood-polypropylene composites,” Polymer Degradation and Stability, vol. 91, no. 12, pp. 3339–3343, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Li and J. He, “Investigation of mechanical property, flame retardancy and thermal degradation of LLDPE-wood-fibre composites,” Polymer Degradation and Stability, vol. 83, no. 2, pp. 241–246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Helwig and D. Paukszta, “Flammability of composites based on polypropylene and flax fibers,” Molecular Crystals and Liquid Crystals Science and Technology A: Molecular Crystals and Liquid Crystals, vol. 354, pp. 373–380, 2000. View at Scopus
  40. M. Helwig, D. Paukszta, J. Garbarczyk, and S. Borysiak, “Composites based on polypropylene and flax fibres: a study of fire performance and some physical and mechanical properties,” in Proceedings from the 3rd International, Symposium on Natural Polymers and Composites (ISNaPol '00), Sao Pedro, Brazil, 2000.
  41. R. Kozłowski and M. Władyka-Przybylak, “Flammability and fire resistance of composites reinforced by natural fibers,” Polymers for Advanced Technologies, vol. 19, no. 6, pp. 446–453, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Russo, C. Carfagna, F. Cimino, D. Acierno, and P. Persico, “Biodegradable composites reinforced with kenaf fibre: thermal, mechanical, and morphological issues,” Advances in Polymer Technology, vol. 32, pp. 313–322, 2012.
  43. B.-H. Lee, H.-S. Kim, S. Lee, H.-J. Kim, and J. R. Dorgan, “Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process,” Composites Science and Technology, vol. 69, no. 15-16, pp. 2573–2579, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Metin, F. Tihminlioǧlu, D. Balköse, and S. Ülkü, “The effect of interfacial interactions on the mechanical properties of polypropylene/natural zeolite composites,” Composites Part A: Applied Science and Manufacturing, vol. 35, no. 1, pp. 23–32, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Demir, D. Balköse, and S. Ülkü, “Influence of surface modification of fillers and polymer on flammability and tensile behaviour of polypropylene-composites,” Polymer Degradation and Stability, vol. 91, no. 5, pp. 1079–1085, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Kazayawoko, J. J. Balatinecz, and L. M. Matuana, “Surface modification and adhesion mechanisms in woodfiber-polypropylene composites,” Journal of Materials Science, vol. 34, no. 24, pp. 6189–6199, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. N. S. Suharty, I. P. Almanar, Sudirman, K. Dihardjo, and N. Astasari, “Flammability, biodegradability and mechanical properties of bio-composites waste polypropylene/ kenaf fibre containing nano CaCO3 with diammonium phosphate,” Procedia Engineerin, vol. 4, pp. 282–287, 2012.
  48. W.-S. Kuo, T.-H. Ko, and H.-I. Chen, “Elastic moduli and damage mechanisms in 3D braided composites incorporating pultruded rods,” Composites Part A: Applied Science and Manufacturing, vol. 29, no. 5-6, pp. 681–692, 1998. View at Scopus
  49. H. Gu, “Dynamic mechanical analysis of the seawater treated glass/polyester composites,” Materials and Design, vol. 30, no. 7, pp. 2774–2777, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. A. K. Rana, B. C. Mitra, and A. N. Banerjee, “Short jute fiber-reinforced polypropylene composites: dynamic Mechanical Study,” Journal of Applied Polymer Science, vol. 71, no. 4, pp. 531–539, 1999. View at Scopus
  51. R. N. Rothon and P. R. Hornsby, “Flame retardant effects of magnesium hydroxide,” Polymer Degradation and Stability, vol. 54, no. 2-3, pp. 383–385, 1996. View at Scopus
  52. M. Sain, S. H. Park, F. Suhara, and S. Law, “Flame retardant and mechanical properties of natural fibre-PP composites containing magnesium hydroxide,” Polymer Degradation and Stability, vol. 83, no. 2, pp. 363–367, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Jeencham, N. Suppakarn, and K. Jarukumjorn, “Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fibre/polypropylene composites,” Composites: Part B, vol. 56, pp. 249–253, 2014.
  54. Z. X. Zhang, J. Zhang, B.-X. Lu, Z. X. Xin, C. K. Kang, and J. K. Kim, “Effect of flame retardants on mechanical properties, flammability and foamability of PP/wood-fiber composites,” Composites Part B: Engineering, vol. 43, no. 2, pp. 150–158, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Izran, A. Zaidon, G. Beyer, A. A. Rashid, F. Abood, and S. Rahim, “Optimising treatment system for kenaf (Hibiscus cannabinus) Particleboard with fire retardants,” Journal of Tropical Forest Science, vol. 22, no. 2, pp. 175–183, 2010. View at Scopus
  56. A. M. Abdul Rashid and L. T. Chew, “Fire retardant treated chipboards,” in Proceeding Conference on Forestry and Forest Product Research, pp. 37–44, CFFPR, Forest Research Institute, Kuala Lumpur, Malaysia, 1990.
  57. United States Government General Accountability Office, “Aviations safety: status of FAA’s actions to oversee the safety of composite airplanes,” Report to Congressional Requesters GAO-11-849, 2011.
  58. P. Joseph and J. Ebdon, “Recent developments in flame-retarding thermoplastics and thermosets,” in Fire Retardant Materials, A. R. Horrocks, Ed., Woodhead Publishing, Cambridge, UK, 2000.