About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2014 (2014), Article ID 702376, 9 pages
http://dx.doi.org/10.1155/2014/702376
Research Article

A New Solution for the Compression of a Two-Layer Strip and Its Application to Analysis of Bonding by Rolling

1A.Yu. Ishlinskii Institute for Problems in Mechanics, Russian Academy of Sciences, 101-1 Prospect Vernadskogo, Moscow 119526, Russia
2Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Ta’zim, Malaysia

Received 28 December 2013; Revised 24 February 2014; Accepted 24 February 2014; Published 25 March 2014

Academic Editor: Roohollah Jamaati

Copyright © 2014 Sergei Alexandrov and Yusof Mustafa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. J. Moore, D. V. Wilson, and W. T. Roberts, “Fabrication of formable metal-metal composites,” Materials Science and Engineering, vol. 48, no. 1, pp. 113–121, 1981. View at Scopus
  2. N. Bay, C. Clemensen, O. Juelstorp, and T. Wanheim, “Bond strength in cold roll bonding,” CIRP Annals-Manufacturing Technology, vol. 34, no. 1, pp. 221–224, 1985. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Pan, K. Gao, and J. Yu, “Cold roll bonding of bimetallic sheets and strips,” Materials Science and Technology, vol. 5, no. 9, pp. 934–939, 1989. View at Scopus
  4. F. Carreño, J. Chao, M. Pozuelo, and O. A. Ruano, “Microstructure and fracture properties of an ultrahigh carbon steel-mild steel laminated composite,” Scripta Materialia, vol. 48, no. 8, pp. 1135–1140, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. H. D. Manesh and A. K. Taheri, “Study of mechanisms of cold roll welding of aluminium alloy to steel strip,” Materials Science and Technology, vol. 20, no. 8, pp. 1064–1068, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Li, G. Zu, M. Ding, Y. Mu, and P. Wang, “Interfacial microstructure and mechanical properties of Cu/Al clad sheet fabricated by asymmetrical roll bonding and annealing,” Materials Science and Engineering A, vol. 529, no. 1, pp. 485–491, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Li, G. Zu, and P. Wang, “Interface strengthening of laminated composite produced by asymmetrical roll bonding,” Materials Science and Engineering A, vol. 562, pp. 96–100, 2013. View at Publisher · View at Google Scholar
  8. A. A. Afonja and D. H. Sansome, “A theoretical analysis of the sandwich rolling process,” International Journal of Mechanical Sciences, vol. 15, no. 1, pp. 1–14, 1973. View at Scopus
  9. S. Lee and D. N. Lee, “Slab analysis of roll bonding of silver clad phosphor bronze sheets,” Materials Science and Technology, vol. 7, no. 11, pp. 1042–1050, 1991. View at Scopus
  10. G. P. Chaudhari and V. Acoff, “Cold roll bonding of multi-layered bi-metal laminate composites,” Composites Science and Technology, vol. 69, no. 10, pp. 1667–1675, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Y.-M. Hwang, H.-H. Hsu, and H.-J. Lee, “Analysis of sandwich sheet rolling by stream function method,” International Journal of Mechanical Sciences, vol. 37, no. 3, pp. 297–315, 1995. View at Scopus
  12. Y.-M. Hwang, H.-H. Hsu, and Y.-L. Hwang, “Analytical and experimental study on bonding behavior at the roll gap during complex rolling of sandwich sheets,” International Journal of Mechanical Sciences, vol. 42, no. 12, pp. 2417–2437, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Pishbin, M. H. Parsa, and A. Dastvareh, “An analytical modified model of clad sheet bonding by cold rolling using upper bond theorem,” Journal of Materials Engineering and Performance, vol. 19, no. 7, pp. 936–941, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Maleki, S. Bagherzadeh, B. Mollaei-Dariani, and K. Abrinia, “Analysis of bonding behavior and critical reduction of two-layer strips in clad cold rolling process,” Journal of Engineering Materials and Performance, vol. 22, no. 4, pp. 917–925, 2013. View at Publisher · View at Google Scholar
  15. R. Hill, “A general method of analysis for metal-working processes,” Journal of the Mechanics and Physics of Solids, vol. 11, no. 5, pp. 305–326, 1963. View at Scopus
  16. A. Azarkhin and O. Richmond, “A model of ploughing by a pyramidal indenter-upper bound method for stress-free surfaces,” Wear, vol. 157, no. 2, pp. 409–418, 1992. View at Scopus
  17. S. P. Moylan, S. Kompella, S. Chandrasekar, and T. N. Farris, “A new approach for studying mechanical properties of thin surface layers affected by manufacturing processes,” Transactions of the ASME Journal of Manufacturing Science and Engineering, vol. 125, no. 2, pp. 310–315, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. T. A. Trunina and E. A. Kokovikhin, “Formation of a finely dispersed structure in steel surface layers under combined processing using hydraulic pressing,” Journal of Machinery Manufacture and Reliability, vol. 37, no. 2, pp. 160–162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Aleksandrov, D. Grabko, and O. Shikimaka, “The determination of the thickness of a layer of intensive deformations in the vicinity of the friction surface in metal forming processes,” Journal of Machinery Manufacture and Reliability, vol. 38, no. 3, pp. 277–282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Orowan, “The calculation of roll pressure in hot and cold flat rolling,” Proceedings of the Institution of Mechanical Engineers, vol. 150, no. 1, pp. 140–167, 1943. View at Publisher · View at Google Scholar
  21. H. Kimura, “Application of Orowan theory to hot rolling of aluminum,” Journal of Japan Institute of Light Metals, vol. 35, no. 4, pp. 222–227, 1985. View at Scopus
  22. J. G. Lenard, F. Wang, and G. Nadkarni, “Role of constitutive formulation in the analysis of hot rolling,” Transactions of ASME Journal of Engineering Materials and Technology, vol. 109, no. 4, pp. 343–349, 1987. View at Scopus
  23. D. J. Gates and T. Tarnopolskaya, “Linear theory for lateral displacements of a metal strip in a tandem cold-rolling mill with asymmetries,” Proceedings of the Institution of Mechanical Engineers C, vol. 222, no. 7, pp. 1131–1148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Kikuchi, H. Kuwahara, N. Mazaki, S. Urai, and H. Miyamura, “Mechanical properties of Ag-Ni super-laminates produced by rolling,” Materials Science and Engineering A, vol. 234-236, pp. 1114–1117, 1997. View at Scopus
  25. A. Atreya and J. G. Lenard, “Study of cold strip rolling,” Transactions of ASME Journal of Engineering Materials and Technology, vol. 101, no. 2, pp. 129–134, 1979. View at Scopus
  26. S. Domanti and D. L. S. McElwain, “Two-dimensional plane strain rolling: an asymptotic approach to the estimation of inhomogeneous effects,” International Journal of Mechanical Sciences, vol. 37, no. 2, pp. 175–196, 1995. View at Scopus
  27. A. G. Owen and A. W. J. Griffin, “Rapid solution of Orowan's equations using a hybrid computer,” Proceedings of the Institution of Electrical Engineers, vol. 119, no. 10, pp. 1510–1516, 1972. View at Scopus
  28. D. Rusia, “Improvements to Alexander's computer model for force and torque calculations in strip rolling processes,” Journal of Materials Shaping Technology, vol. 8, no. 3, pp. 167–177, 1990. View at Publisher · View at Google Scholar · View at Scopus
  29. T. A. El-Bitar, “Computer program for the calculation of roll force and torque with strip tension in cold rolling,” Iron Steelmaker, vol. 20, no. 5, pp. 87–96, 1993. View at Scopus
  30. J. Yanagimoto, T. Morimoto, R. Kurahashi, and I. Chikushi, “Mathematical modelling for rolling force and microstructure evolution and microstructure controlling with heavy reduction in tandem hot strip rolling,” Steel Research, vol. 73, no. 2, pp. 56–62, 2002. View at Scopus
  31. S. Alexandrov, G.-Y. Tzou, and M.-N. Huang, “Plane strain compression of a rigid/perfectly plastic multi-layer strip between parallel platens,” Acta Mechanica, vol. 184, no. 1–4, pp. 103–120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Alexandrov, G. Mishuris, and W. Miszuris, “An analysis of the plane-strain compression of a three-layer strip,” Archive of Applied Mechanics, vol. 71, no. 8, pp. 555–566, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. I. F. Collins and S. A. Meguid, “On the influence of hardening and anisotropy on the plane-strain compression of thin metal strip,” Transactions of ASME Journal of Applied Mechanics, vol. 44, no. 2, pp. 271–278, 1977. View at Scopus
  34. T. Inoue, A. Yanagida, and J. Yanagimoto, “Finite element simulation of accumulative roll-bonding process,” Materials Letters, vol. 106, pp. 37–40, 2013. View at Publisher · View at Google Scholar
  35. T. Inoue and N. Tsuji, “Quantification of strain in accumulative roll-bonding under unlubricated condition by finite element analysis,” Computational Materials Science, vol. 46, no. 1, pp. 261–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Alexandrov and N. Alexandrova, “On the maximum friction law for rigid/plastic, hardening materials,” Meccanica, vol. 35, no. 5, pp. 393–398, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Alexandrov and O. Richmond, “Singular plastic flow fields near surfaces of maximum friction stress,” International Journal of Non-Linear Mechanics, vol. 36, no. 1, pp. 1–11, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Tomita and R. Sowerby, “An approximate analysis for studying the plane strain deformation of strain rate sensitive materials,” International Journal of Mechanical Sciences, vol. 21, no. 8, pp. 505–516, 1979. View at Scopus
  39. N. Rebelo and S. Kobayashi, “A coupled analysis of viscoplastic deformation and heat transfer-II. Applications,” International Journal of Mechanical Sciences, vol. 22, no. 11, pp. 707–718, 1980. View at Scopus
  40. E. J. Appleby, C. Y. Lu, R. S. Rao, M. L. Devenpeck, P. K. Wright, and O. Richmond, “Strip drawing: a theoretical-experimental comparison,” International Journal of Mechanical Sciences, vol. 26, no. 5, pp. 351–362, 1984. View at Scopus
  41. R. E. Dutton, R. L. Goetz, S. Shamasundar, and S. L. Semiatin, “The ring test for P/M materials,” Transactions of the ASME Journal of Manufacturing Science and Engineering, vol. 120, no. 4, pp. 764–769, 1998. View at Scopus
  42. S. M. Roberts, F. R. Hall, A. Van Bael et al., “Benchmark tests for 3-D, elasto-plastic, finite-element codes for the modelling of metal forming processes,” Journal of Materials Processing Technology, vol. 34, no. 1–4, pp. 61–68, 1992. View at Scopus
  43. J. Helsing and A. Jonsson, “On the accuracy of benchmark tables and graphical results in the applied mechanics literature,” Transactions ASME Journal of Applied Mechanics, vol. 69, no. 1, pp. 88–90, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Sliwa, “A test determining the ability of different materials to undergo simultaneous plastic deformation to produce metal composites,” Materials Science and Engineering A, vol. 135, pp. 259–265, 1991. View at Scopus