About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2014 (2014), Article ID 746470, 6 pages
http://dx.doi.org/10.1155/2014/746470
Research Article

Influence of Surface Modification of Alumina on Improvement of Wetability in Aluminium Matrix Composite

1Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
2Department of Advanced Materials and New Energies, Iranian Research Organization for Science and Technology, Tehran 3353-5111, Iran

Received 24 October 2013; Revised 26 January 2014; Accepted 16 February 2014; Published 19 March 2014

Academic Editor: Tao Zhang

Copyright © 2014 Alireza Samiee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kok, “Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites,” Journal of Materials Processing Technology, vol. 161, no. 3, pp. 381–387, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Rahimian, N. Parvin, and N. Ehsani, “The effect of particle size, sintering temperature and sintering time on the properties of Al-Al2O3 composites, made by powder metallurgy,” Journal of Materials Design, vol. 32, pp. 1031–1038, 2011.
  3. M. Besterci and L. Kováč, “Microstructure and properties of Cu-Al2O3 composites prepared by powder metallurgy,” International Journal of Materials and Product Technology, vol. 18, no. 1–3, pp. 26–56, 2003. View at Scopus
  4. I. M. Hutchings, S. Wilson, and A. T. Alpas, Comprehensive Composite Materials, vol. 3, Elsevier Science, London, UK, 2000.
  5. J. Scalon, N. R. J. Fieller, E. C. Stillman, and H. V. Atkinson, “A model-based analysis of particle size distributions in composite materials,” Acta Materialia, vol. 51, no. 4, pp. 997–1006, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. P. K. Ghosh and S. Ray, “Fabrication and properties of compocast aluminium-alumina particulate composite,” Indian Journal of Technology, vol. 26, no. 2, pp. 83–94, 1988. View at Scopus
  7. J. B. Fogagnolo, E. M. Ruiz-Navas, M. H. Robert, and J. M. Torralba, “The effects of mechanical alloying on the compressibility of aluminium matrix composite powder,” Materials Science and Engineering A, vol. 355, no. 1-2, pp. 50–55, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. J. B. Fogagnolo, F. Velasco, M. H. Robert, and J. M. Torralba, “Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders,” Materials Science and Engineering A, vol. 342, no. 1-2, pp. 131–143, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. L. E. G. Cambronero, E. Sánchez, J. M. Ruiz-Roman, and J. M. Ruiz-Prieto, “Mechanical characterisation of AA7015 aluminium alloy reinforced with ceramics,” Journal of Materials Processing Technology, vol. 143-144, no. 1, pp. 378–383, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. P. K. Ghosh, S. Ray, and P. K. Rohatgi, “Incorporation of alumina particles in aluminium-magnesium alloy by stirring in melt,” Transactions of the Japan Institute of Metals, vol. 25, no. 6, pp. 440–444, 1984. View at Scopus
  11. K. D. Woo and H. B. Lee, “Fabrication of Al alloy matrix composite reinforced with subsive-sized Al2O3 particles by the in situ displacement reaction using high-energy ball-milled powder,” Materials Science and Engineering A, vol. 449–451, pp. 829–832, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Suryanarayana, “Mechanical alloying and milling,” Progress in Materials Science, vol. 46, no. 1-2, pp. 1–184, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. S. H. Chen and T. C. Wang, “Size effects in the particle-reinforced metal-matrix composites,” Acta Mechanica, vol. 157, no. 1–4, pp. 113–127, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Prabhu, C. Suryanarayana, L. An, and R. Vaidyanathan, “Synthesis and characterization of high volume fraction Al-Al2O3 nanocomposite powders by high-energy milling,” Materials Science and Engineering A, vol. 425, no. 1-2, pp. 192–200, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. R. Rosenberger, C. E. Schvezov, and E. Forlerer, “Wear of different aluminum matrix composites under conditions that generate a mechanically mixed layer,” Wear, vol. 259, no. 1–6, pp. 590–601, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. L. J. Yang, “Wear coefficient equation for aluminium-based matrix composites against steel disc,” Wear, vol. 255, no. 1–6, pp. 579–592, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Altinkok and R. Koker, “Modelling of the prediction of tensile and density properties in particle reinforced metal matrix composites by using neural networks,” Materials and Design, vol. 27, no. 8, pp. 625–631, 2006. View at Publisher · View at Google Scholar · View at Scopus