About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2014 (2014), Article ID 932637, 8 pages
http://dx.doi.org/10.1155/2014/932637
Review Article

Molecular Imprinting for High-Added Value Metals: An Overview of Recent Environmental Applications

Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece

Received 26 January 2014; Accepted 11 February 2014; Published 7 April 2014

Academic Editor: Margaritis Kostoglou

Copyright © 2014 George Z. Kyzas and Dimitrios N. Bikiaris. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Chen, S. Piletsky, and A. P. F. Turner, “Molecular recognition: design of ‘keys’,” Combinatorial Chemistry and High Throughput Screening, vol. 5, no. 6, pp. 409–427, 2002. View at Scopus
  2. R. Srinivasan, “Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water,” Advances in Materials Science and Engineering, vol. 2011, Article ID 872531, 17 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Sasaki, Y. Kobashi, T. Nagai, and M. Maeda, “Application of electron beam melting to the removal of phosphorus from silicon: toward production of solar-grade silicon by metallurgical processes,” Advances in Materials Science and Engineering, vol. 2013, Article ID 857196, 8 pages, 2013. View at Publisher · View at Google Scholar
  4. A. Radenović, J. Malina, and T. Sofilić, “Characterization of ladle furnace slag from carbon steel production as a potential adsorbent,” Advances in Materials Science and Engineering, vol. 2013, Article ID 198240, 6 pages, 2013. View at Publisher · View at Google Scholar
  5. S. M. Alahmadi, S. Mohamad, and M. Jamil Maah, “Preparation of organic-inorganic hybrid materials based on MCM-41 and its applications,” Advances in Materials Science and Engineering, vol. 2013, Article ID 634863, 8 pages, 2013. View at Publisher · View at Google Scholar
  6. A. G. Balogh, K. Baba, D. D. Cohen, R. G. Elliman, W. Ensinger, and J. Gyulai, “Modification, synthesis, and analysis of advanced materials using ion beam techniques,” Advances in Materials Science and Engineering, vol. 2012, Article ID 431297, 2 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Jiang, T. Chen, and Q. Yang, “Photocatalytic materials,” Advances in Materials Science and Engineering, vol. 2012, Article ID 186948, 2 pages, 2012. View at Publisher · View at Google Scholar
  8. Y. Mobarak, M. Bassyouni, and M. Almutawa, “Materials selection, synthesis, and dielectrical properties of PVC nanocomposites,” Advances in Materials Science and Engineering, vol. 2013, Article ID 149672, 6 pages, 2013. View at Publisher · View at Google Scholar
  9. M. V. Polyakov, “Adsorption properties and structure of silica gel,” The Journal of Physical Chemistry, vol. 2, pp. 799–805, 1931.
  10. F. H. Dickey, “Specific adsorption,” The Journal of Physical Chemistry, vol. 59, no. 8, pp. 695–707, 1955. View at Scopus
  11. G. Wulff and A. Sarhan, “Use of polymers with enzyme-analogous structures for the resolution of racemates,” Angewandte Chemie—International Edition in English, vol. 11, pp. 341–344, 1972.
  12. B. Sellergren and L. Andersson, “Molecular recognition in macroporous polymers prepared by a substrate analogue imprinting strategy,” Journal of Organic Chemistry, vol. 55, no. 10, pp. 3381–3383, 1990. View at Scopus
  13. K. J. Shea and D. Y. Sasaki, “An analysis of small-molecule binding to functionalized synthetic polymers by13C CP/MAS NMR and FT-IR spectroscopy,” Journal of the American Chemical Society, vol. 113, no. 11, pp. 4109–4120, 1991. View at Scopus
  14. G. Wulff, “Enzyme-like catalysis by molecularly imprinted polymers,” Chemical Reviews, vol. 102, no. 1, pp. 1–27, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Arshady and K. Mosbach, “Synthesis of substrate-selective polymers by host-guest polymerization,” Macromolecular Chemistry, vol. 182, no. 2, pp. 687–692, 1981.
  16. M. J. Whitcombe, M. E. Rodriguez, P. Villar, and E. N. Vulfson, “A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol,” Journal of the American Chemical Society, vol. 117, no. 27, pp. 7105–7111, 1995. View at Scopus
  17. B. Sellergren, “Imprinted dispersion polymers: a new class of easily accessible affinity stationary phases,” Journal of Chromatography A, vol. 673, no. 1, pp. 133–141, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. S. A. Piletsky, E. V. Piletska, K. Karim, K. W. Freebairn, C. H. Legge, and A. P. F. Turner, “Polymer cookery: influence of polymerization conditions on the performance of molecularly imprinted polymers,” Macromolecules, vol. 35, no. 19, pp. 7499–7504, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. D. J. O'Shannessy, B. Ekberg, and K. Mosbach, “Molecular imprinting of amino acid derivatives at low temperature (0°C) using photolytic homolysis of azobisnitriles,” Analytical Biochemistry, vol. 177, no. 1, pp. 144–149, 1989. View at Scopus
  20. D. Spivak, M. A. Gilmore, and K. J. Shea, “Evaluation of binding and origins of specificity of 9-ethyladenine imprinted polymers,” Journal of the American Chemical Society, vol. 119, no. 19, pp. 4388–4393, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Wulff, B. Heide, and G. Helfmeier, “Enzyme-analogue built polymers, 24 On the distance accuracy of functional groups in polymers and silicas introduced by a template approach,” Reactive Polymers, Ion Exchangers, Sorbents, vol. 6, no. 2-3, pp. 299–310, 1987. View at Scopus
  22. M. Sibrian-Vazquez and D. A. Spivak, “Characterization of molecularly imprinted polymers employing crosslinkers with nonsymmetric polymerizable groups,” Journal of Polymer Science A: Polymer Chemistry, vol. 42, no. 15, pp. 3668–3675, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Sellergren, “Direct drug determination by selective sample enrichment on an imprinted polymer,” Analytical Chemistry, vol. 66, no. 9, pp. 1578–1582, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Z. Kyzas, D. N. Bikiaris, and N. K. Lazaridis, “Selective separation of basic and reactive dyes by molecularly imprinted polymers (MIPs),” Chemical Engineering Journal, vol. 149, no. 1–3, pp. 263–272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Caro, R. M. Marcé, P. A. G. Cormack, D. C. Sherrington, and F. Borrull, “On-line solid-phase extraction with molecularly imprinted polymers to selectively extract substituted 4-chlorophenols and 4-nitrophenol from water,” Journal of Chromatography A, vol. 995, no. 1-2, pp. 233–238, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. O. Brüggemann, A. Visnjevski, R. Burch, and P. Patel, “Selective extraction of antioxidants with molecularly imprinted polymers,” Analytica Chimica Acta, vol. 504, no. 1, pp. 81–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Tsukaghoshi, K. Y. Yu, M. Maeda, and M. Takagi, “Metal ion- selective adsorbent prepared by surface-imprinting polymerization,” Bulletin of the Chemical Society of Japan, vol. 66, pp. 114–120, 1993.
  28. Y. Koide, H. Shosenji, M. Maeda, and M. Takagi, “Selective adsorption of metal ions to surface-templated resins prepared by emulsion polymerization using a functional surfactant,” ACS Symposium Series, vol. 703, pp. 264–277, 1998. View at Scopus
  29. H. Chen, M. M. Olmstead, R. L. Albright, J. Devenyi, and R. H. Fish, “Metal-ion-templated polymers: Synthesis and structure of N-(4-vinylbenzyl)-1,4,7-triazacyclononanezinc(II) complexes, their copolymerization with divinylbenzene, and metal-ion selectivity studies of the demetalated resins—evidence for a sandwich complex in the polymer matrix,” Angewandte Chemie—International Edition in English, vol. 36, no. 6, pp. 642–645, 1997. View at Scopus
  30. J. M. Gladis and T. P. Rao, “Effect of porogen type on the synthesis of uranium ion imprinted polymer materials for the preconcentration/separation of traces of uranium,” Microchimica Acta, vol. 146, no. 3-4, pp. 251–258, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Kala, J. Mary Gladis, and T. Prasada Rao, “Preconcentrative separation of erbium from Y, Dy, Ho, Tb and Tm by using ion imprinted polymer particles via solid phase extraction,” Analytica Chimica Acta, vol. 518, no. 1-2, pp. 143–150, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. V. M. Biju, J. M. Gladis, and T. P. Rao, “Ion imprinted polymer particles: synthesis, characterization and dysprosium ion uptake properties suitable for analytical applications,” Analytica Chimica Acta, vol. 478, no. 1, pp. 43–51, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. O. Vigneau, C. Pinel, and M. Lemaire, “Separation of lanthanides by ion chromatography with imprinted polymers,” Chemistry Letters, vol. 32, no. 6, pp. 530–531, 2003. View at Scopus
  34. Y. Liu, X. Chang, S. Wang, Y. Guo, B. Din, and S. Meng, “Solid-phase extraction and preconcentration of cadmium(II) in aqueous solution with Cd(II)-imprinted resin (poly-Cd(II)-DAAB-VP) packed columns,” Analytica Chimica Acta, vol. 519, no. 2, pp. 173–179, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. O. Güney, Y. Yilmaz, and Ö. Pekcan, “Metal ion templated chemosensor for metal ions based on fluorescence quenching,” Sensors and Actuators B: Chemical, vol. 85, no. 1-2, pp. 86–89, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. M. E. H. Ahamed, X. Y. Mbianda, A. F. Mulaba-Bafubiandi, and L. Marjanovic, “Selective extraction of gold(III) from metal chloride mixtures using ethylenediamine N-(2-(1-imidazolyl)ethyl) chitosan ion-imprinted polymer,” Hydrometallurgy, vol. 140, pp. 1–13, 2013.
  37. E. Moazzen, H. Ebrahimzadeh, M. M. Amini, and O. Sadeghi, “A high selective ion-imprinted polymer grafted on a novel nanoporous material for efficient gold extraction,” Journal of Separation Science, vol. 36, no. 11, pp. 1826–1833, 2013.
  38. H. Ebrahimzadeh, E. Moazzen, M. M. Amini, and O. Sadeghi, “Novel ion-imprinted polymer coated on nanoporous silica as a highly selective sorbent for the extraction of ultratrace quantities of gold ions from mine stone samples,” Microchimica Acta, vol. 180, no. 5-6, pp. 445–451, 2013.
  39. H. Ebrahimzadeh, E. Moazzen, M. M. Amini, and O. Sadeghi, “Novel magnetic ion imprinted polymer as a highly selective sorbent for extraction of gold ions in aqueous samples,” Analytical Methods, vol. 4, no. 10, pp. 3232–3237, 2012.
  40. X. Wang, L. Zhang, C. Ma, R. Song, H. Hou, and D. Li, “Enrichment and separation of silver from waste solutions by metal ion imprinted membrane,” Hydrometallurgy, vol. 100, no. 1-2, pp. 82–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. X. Song, C. Li, R. Xu, and K. Wang, “Molecular-ion-imprinted chitosan hydrogels for the selective adsorption of silver(I) in aqueous solution,” Industrial and Engineering Chemistry Research, vol. 51, no. 34, pp. 11261–11265, 2012.
  42. M. Ahamed, X. Y. Mbianda, A. F. Mulaba-Bafubiandi, and L. Marjanovic, “Ion imprinted polymers for the selective extraction of silver(I) ions in aqueous media: kinetic modeling and isotherm studies,” Reactive and Functional Polymers, vol. 73, no. 3, pp. 474–483, 2013.
  43. S. Daniel and T. Prasada Rao, “Ion imprinted polymers—a new strategy based on the utilization of ion association complex of platinum as a template,” in Proceedings of the 29th IPMI Annual Precious Metals Conference, pp. 78–90, 2005.
  44. B. Leśniewska, M. Kosińska, B. Godlewska-Zyłkiewicz, E. Zambrzycka, and A. Z. Wilczewska, “Selective solid phase extraction of platinum on an ion imprinted polymers for its electrothermal atomic absorption spectrometric determination in environmental samples,” Microchimica Acta, vol. 175, no. 3-4, pp. 273–282, 2011. View at Publisher · View at Google Scholar · View at Scopus