About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2014 (2014), Article ID 971942, 12 pages
http://dx.doi.org/10.1155/2014/971942
Research Article

Bienzymatic Acetylcholinesterase and Choline Oxidase Immobilized Biosensor Based on a Phenyl Carboxylic Acid-Grafted Multiwalled Carbon Nanotube

1Department of Chemistry, Hannam University, Daejeon 305-811, Republic of Korea
2RedoxTech, 198-24 Myeonmok-dong, Jungnang-gu, Seoul 131-823, Republic of Korea

Received 2 January 2014; Accepted 6 February 2014; Published 13 March 2014

Academic Editor: Yong Chae Jung

Copyright © 2014 So-Ra Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Trifonov, T. Houtani, S. Hamada, M. Kase, M. Maruyama, and T. Sugimoto, “In situ hybridization study of the distribution of choline acetyltransferase mRNA and its splice variants in the mouse brain and spinal cord,” Neuroscience, vol. 159, no. 1, pp. 344–357, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. B. E. Jones, “From waking to sleeping: neuronal and chemical substrates,” Trends in Pharmacological Sciences, vol. 26, no. 11, pp. 578–586, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. H. M. Arnold, J. A. Burk, E. M. Hodgson, M. Sarter, and J. P. Bruno, “Differential cortical acetylcholine release in rats performing a sustained attention task versus behavioral control tasks that do not explicitly tax attention,” Neuroscience, vol. 114, no. 2, pp. 451–460, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Singh, M. Kaur, H. Kukreja, R. Chugh, O. Silakari, and D. Singh, “Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection,” European Journal of Medicinal Chemistry, vol. 70, pp. 165–188, 2013. View at Publisher · View at Google Scholar
  5. C. -L. Liang and G. A. Marks, “GABAA receptors are located in cholinergic terminals in the nucleus pontis oralis of the rat: implications for REM sleep control,” Brain Research, vol. 1543, pp. 58–64, 2014.
  6. S. Hou, Z. Ou, Q. Chen, and B. Wu, “Amperometric acetylcholine biosensor based on self-assembly of gold nanoparticles and acetylcholinesterase on the sol-gel/multi-walled carbon nanotubes/choline oxidase composite-modified platinum electrode,” Biosensors and Bioelectronics, vol. 33, no. 1, pp. 44–49, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Deng, J. Lei, L. Cheng, Y. Zhang, and H. Ju, “Amplified electrochemiluminescence of quantum dots by electrochemically reduced graphene oxide for nanobiosensing of acetylcholine,” Biosensors and Bioelectronics, vol. 26, no. 11, pp. 4552–4558, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Upadhyay, G. R. Rao, M. K. Sharma, B. K. Bhattacharya, V. K. Rao, and R. Vijayaraghavan, “Immobilization of acetylcholineesterase-choline oxidase on a gold-platinum bimetallic nanoparticles modified glassy carbon electrode for the sensitive detection of organophosphate pesticides, carbamates and nerve agents,” Biosensors and Bioelectronics, vol. 25, no. 4, pp. 832–838, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Pundir, N. Chauhan, J. Narang, and C. S. Pundir, “Amperometric choline biosensor based on multiwalled carbon nanotubes/zirconium oxide nanoparticles electrodeposited on glassy carbon electrode,” Analytical Biochemistry, vol. 427, pp. 26–32, 2012. View at Publisher · View at Google Scholar
  10. S. -H. Choi, D. -J. Chung, and H. -D. Kwen, “Chapter 12: fabrication of the biosensor using the vinyl polymer-grafted carbon nanotubes,” in New Perspectives in Biosensors Technology and Applications, InTech, 2011. View at Publisher · View at Google Scholar
  11. K.-I. Kim, H.-Y. Kang, J.-C. Lee, and S.-H. Choi, “Fabrication of a multi-walled nanotube (MWNT) ionic liquid electrode and its application for sensing phenolics in red wines,” Sensors, vol. 9, no. 9, pp. 6701–6714, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S.-H. Choi, J.-H. Yang, and J.-C. Lee, “Tyrosinase-immobilized biosensor based on the functionalized hydroxyl group-MWNT and detection of phenolic compounds in red wines,” Journal of Sensors, vol. 2009, Article ID 916515, 9 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. K.-L. Kim, J.-C. Lee, K. Robards, and S.-H. Choi, “Immobilization of tyrosinase in carboxylic and carbonyl group-modified MWNT electrode and its application for sensing phenolics in red wines,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 6, pp. 3790–3798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. D.-S. Yang, D.-J. Jung, and S.-H. Choi, “One-step functionalization of multi-walled carbon nanotubes by radiation-induced graft polymerization and their application as enzyme-free biosensors,” Radiation Physics and Chemistry, vol. 79, no. 4, pp. 434–440, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. D.-J. Chung, A. K. Whittaker, and S.-H. Choi, “Electrochemical DNA biosensor based on IL-modified MWNTs electrode prepared by radiation-induced graft polymerization,” Journal of Applied Polymer Science, vol. 126, no. S2, pp. E28–E33, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. D. -J. Chung, S. -H. Oh, S. Komathic, A. I. Gopalan, K. -P. Lee, and S. -H. Choi, “One-step modification of various electrode surfaces using diazonium salt compounds and the application of this technology to electrochemical DNA (E-DNA) sensors,” Electrochimica Acta, vol. 76, pp. 394–403, 2012. View at Publisher · View at Google Scholar