About this Journal Submit a Manuscript Table of Contents
Anemia
Volume 2011 (2011), Article ID 740235, 15 pages
http://dx.doi.org/10.1155/2011/740235
Review Article

Asthma in Sickle Cell Disease: Implications for Treatment

Biomedical Research Department, Center for Clinical Pharmacogenomics and Translational Research, Nemours Children's Clinic, 807 Children's Way, Jacksonville, FL 32207, USA

Received 17 August 2010; Revised 9 November 2010; Accepted 13 December 2010

Academic Editor: Maurizio Longinotti

Copyright © 2011 Kathryn Blake and John Lima. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. L. Hassell, “Population estimates of sickle cell disease in the U.S.,” American Journal of Preventive Medicine, vol. 38, no. 4, pp. S512–S521, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. A. Ashley-Koch, Q. Yang, and R. S. Olney, “Sickle hemoglobin (Hb S) allele and sickle cell disease: a HuGE review,” American Journal of Epidemiology, vol. 151, no. 9, pp. 839–845, 2000. View at Scopus
  3. R. S. Olney, “Newborn screening for sickle cell disease: public health impact and evaluation,” in Part IV. Developing, Implementing, and Evaluating Population Interventions, chapter 22, Oxford University Press, Oxford, UK, 2000, http://www.cdc.gov/genomics/resources/books/21stcent/chap22.htm.
  4. “Trends in Asthma morbidity and mortality-January 2009,” American Lung Association Epidemiology & Statistics Unit Research Epidemiology & Statistics Unit, January 2009.
  5. L. Akinbami, “The state of childhood asthma, United States, 1980–2005,” Advance data, no. 381, pp. 1–24, 2006. View at Scopus
  6. E. P. Vichinsky, L. D. Neumayr, A. N. Earles et al., “Causes and outcomes of the acute chest syndrome in sickle cell disease,” New England Journal of Medicine, vol. 342, no. 25, pp. 1855–1865, 2000. View at Publisher · View at Google Scholar
  7. M. A. Leong, C. Dampier, L. Varlotta, and J. L. Allen, “Airway hyperreactivity in children with sickle cell disease,” Journal of Pediatrics, vol. 131, no. 2, pp. 278–285, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. J. M. Knight-Madden, T. S. Forrester, N. A. Lewis, and A. Greenough, “Asthma in children with sickle cell disease and its association with acute chest syndrome,” Thorax, vol. 60, no. 3, pp. 206–210, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. A. C. Koumbourlis, H. J. Zar, A. Hurlet-Jensen, and M. R. Goldberg, “Prevalence and reversibility of lower airway obstruction in children with sickle cell disease,” Journal of Pediatrics, vol. 138, no. 2, pp. 188–192, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. K. P. Sylvester, R. A. Patey, G. F. Rafferty, D. Rees, S. L. Thein, and A. Greenough, “Airway hyperresponsiveness and acute chest syndrome in children with sickle cell anemia,” Pediatric Pulmonology, vol. 42, no. 3, pp. 272–276, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. O. Y. Ozbek, B. Malbora, N. Sen, A. C. Yazici, E. Ozyurek, and N. Ozbek, “Airway hyperreactivity detected by methacholine challenge in children with sickle cell disease,” Pediatric Pulmonology, vol. 42, no. 12, pp. 1187–1192, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. R. Bryant, “Asthma in the pediatric sickle cell patient with acute chest syndrome,” Journal of Pediatric Health Care, vol. 19, no. 3, pp. 157–162, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. R. C. Strunk, M. S. Brown, J. H. Boyd, P. Bates, J. J. Field, and M. R. DeBaun, “Methacholine challenge in children with sickle cell disease: a case series,” Pediatric Pulmonology, vol. 43, no. 9, pp. 924–929, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. J. J. Field, J. Stocks, F. J. Kirkham, et al., “Airway hyper-responsiveness in children with sickle cell anemia,” Chest. In press.
  15. J. J. Field, E. A. Macklin, Y. Yan, R. C. Strunk, and M. R. DeBaun, “Sibling history of asthma is a risk factor for pain in children with sickle cell anemia,” American Journal of Hematology, vol. 83, no. 11, pp. 855–857, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. K. L. Phillips, P. An, J. H. Boyd et al., “Major gene effect and additive familial pattern of inheritance of asthma exist among families of probands with sickle cell anemia and asthma,” American Journal of Human Biology, vol. 20, no. 2, pp. 149–153, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. J. H. Boyd, E. A. Macklin, R. C. Strunk, and M. R. DeBaun, “Asthma is associated with increased mortality in individuals with sickle cell anemia,” Haematologica, vol. 92, no. 8, pp. 1115–1118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Duckworth, L. Hsu, H. Feng et al., “Physician-diagnosed asthma and acute chest syndrome: associations with NOS polymorphisms,” Pediatric Pulmonology, vol. 42, no. 4, pp. 332–338, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. F. Bernaudin, R. C. Strunk, A. Kamdem et al., “Asthma is associated with acute chest syndrome, but not with an increased rate of hospitalization for pain among children in France with sickle cell anemia: a retrospective cohort study,” Haematologica, vol. 93, no. 12, pp. 1917–1918, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. J. H. Boyd, E. A. Macklin, R. C. Strunk, and M. R. DeBaun, “Asthma is associated with acute chest syndrome and pain in children with sickle cell anemia,” Blood, vol. 108, no. 9, pp. 2923–2927, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. K. P. Sylvester, R. A. Patey, S. Broughton et al., “Temporal relationship of asthma to acute chest syndrome in sickle cell disease,” Pediatric Pulmonology, vol. 42, no. 2, pp. 103–106, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. C. T. Quinn, E. P. Shull, N. Ahmad, N. J. Lee, Z. R. Rogers, and G. R. Buchanan, “Prognostic significance of early vaso-occlusive complications in children with sickle cell anemia,” Blood, vol. 109, no. 1, pp. 40–45, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. D. S. Darbari, P. Kple-Faget, J. Kwagyan, S. Rana, V. R. Gordeuk, and O. Castro, “Circumstances of death in adult sickle cell disease patients,” American Journal of Hematology, vol. 81, no. 11, pp. 858–863, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. C. D. Fitzhugh, N. Lauder, J. C. Jonassaint et al., “Cardiopulmonary complications leading to premature deaths in adult patients with sickle cell disease,” American Journal of Hematology, vol. 85, no. 1, pp. 36–40, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. N. Zimmermann and M. E. Rothenberg, “The arginine-arginase balance in asthma and lung inflammation,” European Journal of Pharmacology, vol. 533, no. 1–3, pp. 253–262, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. D. Vercelli, “Arginase: marker, effector, or candidate gene for asthma?” Journal of Clinical Investigation, vol. 111, no. 12, pp. 1815–1817, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. “ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005,” American Journal of Respiratory and Critical Care Medicine, vol. 171, no. 8, pp. 912–930, 2005.
  28. A. D. Smith, J. O. Cowan, K. P. Brassett, G. P. Herbison, and D. R. Taylor, “Use of exhaled nitric oxide measurements to guide treatment in chronic asthma,” New England Journal of Medicine, vol. 352, no. 21, pp. 2163–2173, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. S. A. Kharitonov, D. Yates, R. A. Robbins, R. Logan-Sinclair, E. A. Shinebourne, and P. J. Barnes, “Increased nitric oxide in exhaled air of asthmatic patients,” Lancet, vol. 343, no. 8890, pp. 133–135, 1994. View at Publisher · View at Google Scholar · View at Scopus
  30. S. A. Kharitonov, D. H. Yates, and P. J. Barnes, “Inhaled glucocorticoids decrease nitric oxide in exhaled air of asthmatic patients,” American Journal of Respiratory and Critical Care Medicine, vol. 153, no. 1, pp. 454–457, 1996. View at Scopus
  31. C. R. Morris, M. T. Gladwin, and G. J. Kato, “Nitric oxide and arginine dysregulation: a novel pathway to pulmonary hypertension in hemolytic disorders,” Current Molecular Medicine, vol. 8, no. 7, pp. 620–632, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. C. R. Morris, “Asthma management: reinventing the wheel in sickle cell disease,” American Journal of Hematology, vol. 84, no. 4, pp. 234–241, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. K. J. Sullivan, N. Kissoon, L. J. Duckworth et al., “Low exhaled nitric oxide and a polymorphism in the NOS I gene is associated with acute chest syndrome,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 12, pp. 2186–2190, 2002. View at Scopus
  34. K. J. Sullivan, N. Kissoon, E. Sandler et al., “Effect of oral arginine supplementation on exhaled nitric oxide concentration in sickle cell anemia and acute chest syndrome,” Journal of Pediatric Hematology/Oncology, vol. 32, no. 7, pp. e249–e258, 2010.
  35. R. E. Girgis, M. A. Qureshi, J. Abrams, and P. Swerdlow, “Decreased exhaled nitric oxide in sickle cell disease: relationship with chronic lung involvement,” American Journal of Hematology, vol. 72, no. 3, pp. 177–184, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. S. S. Pawar, J. A. Panepinto, and D. C. Brousseau, “The effect of acute pain crisis on exhaled nitric oxide levels in children with sickle cell disease,” Pediatric Blood and Cancer, vol. 50, no. 1, pp. 111–113, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. P. Niscola, F. Sorrentino, L. Scaramucci, P. de Fabritiis, and P. Cianciulli, “Pain syndromes in sickle cell disease: an update,” Pain Medicine, vol. 10, no. 3, pp. 470–480, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. E. Jacob, M. M. Sockrider, M. Dinu, M. Acosta, and B. U. Mueller, “Respiratory symptoms and acute painful episodes in sickle cell disease,” Journal of Pediatric Oncology Nursing, vol. 27, no. 1, pp. 33–39, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. B. S. Shapiro, D. F. Dinges, E. C. Orne et al., “Home management of sickle cell-related pain in children and adolescents: natural history and impact on school attendance,” Pain, vol. 61, no. 1, pp. 139–144, 1995. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Dampier, B. N. Y. Setty, B. Eggleston, D. Brodecki, P. O'Neal, and M. Stuart, “Vaso-occlusion in children with sickle cell disease: clinical characteristics and biologic correlates,” Journal of Pediatric Hematology/Oncology, vol. 26, no. 12, pp. 785–790, 2004. View at Scopus
  41. J. Glassberg, J. F. Spivey, R. Strunk, S. Boslaugh, and M. R. DeBaun, “Painful episodes in children with sickle cell disease and asthma are temporally associated with respiratory symptoms,” Journal of Pediatric Hematology/Oncology, vol. 28, no. 8, pp. 481–485, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. S. T. Holgate, “Pathogenesis of asthma,” Clinical and Experimental Allergy, vol. 38, no. 6, pp. 872–897, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. O. S. Platt, “Sickle cell anemia as an inflammatory disease,” Journal of Clinical Investigation, vol. 106, no. 3, pp. 337–338, 2000. View at Scopus
  44. J. M. Drazen, E. Israel, and P. M. O'Byrne, “Treatment of asthma with drugs modifying the leukotriene pathway,” New England Journal of Medicine, vol. 340, no. 3, pp. 197–206, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. Y. Kanaoka and J. A. Boyce, “Cysteinyl leukotrienes and their receptors: cellular distribution and function in immune and inflammatory responses,” Journal of Immunology, vol. 173, no. 3, pp. 1503–1510, 2004. View at Scopus
  46. J. W. Woods, J. F. Evans, D. Ethier et al., “5-lipoxygenase and 5-lipoxygenase-activating protein are localized in the nuclear envelope of activated human leukocytes,” Journal of Experimental Medicine, vol. 178, no. 6, pp. 1935–1946, 1993. View at Publisher · View at Google Scholar · View at Scopus
  47. B. K. Lam, W. F. Owen, K. F. Austen, and R. J. Soberman, “The identification of a distinct export step following the biosynthesis of leukotriene C by human eosinophils,” Journal of Biological Chemistry, vol. 264, no. 22, pp. 12885–12889, 1989. View at Scopus
  48. M. E. Anderson, R. D. Allison, and A. Meister, “Interconversion of leukotrienes catalyzed by purified γ-glutamyl transpeptidase: concomitant formation of leukotriene D4 and γ-glutamyl amino acids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 4, pp. 1088–1091, 1982. View at Scopus
  49. C. W. Lee, R. A. Lewis, E. J. Corey, and K. F. Austen, “Conversion of leukotriene D to leukotriene E by a dipeptidase released from the specific granule of human polymorphonuclear leukocytes,” Immunology, vol. 48, no. 1, pp. 27–35, 1983. View at Scopus
  50. N. Rabinovitch, “Urinary leukotriene E,” Immunology and Allergy Clinics of North America, vol. 27, no. 4, pp. 651–664, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. G. Folco and R. C. Murphy, “Eicosanoid transcellular biosynthesis: from cell-cell interactions to in vivo tissue responses,” Pharmacological Reviews, vol. 58, no. 3, pp. 375–388, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. S. D. Nandedkar, T. R. Feroah, W. Hutchins et al., “Histopathology of experimentally induced asthma in a murine model of sickle cell disease,” Blood, vol. 112, no. 6, pp. 2529–2538, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. B. N. Y. Setty and M. J. Stuart, “Eicosanoids in sickle cell disease: potential relevance of neutrophil leukotriene B to disease pathophysiology,” Journal of Laboratory and Clinical Medicine, vol. 139, no. 2, pp. 80–89, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. B. O. Ibe, J. Kurantsin-Mills, J. U. Raj, and L. S. Lessin, “Plasma and urinary leukotrienes in sickle cell disease: possible role in the inflammatory process,” European Journal of Clinical Investigation, vol. 24, no. 1, pp. 57–64, 1994. View at Scopus
  55. J. J. Field, R. C. Strunk, J. E. Knight-Perry, M. A. Blinder, R. R. Townsend, and M. R. DeBaun, “Urinary cysteinyl leukotriene E significantly increases during pain in children and adults with sickle cell disease,” American Journal of Hematology, vol. 84, no. 4, pp. 231–233, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. J. J. Field, J. Krings, N. L. White et al., “Urinary cysteinyl leukotriene e is associated with increased risk for pain and acute chest syndrome in adults with sickle cell disease,” American Journal of Hematology, vol. 84, no. 3, pp. 158–160, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. J. E. Jennings, T. Ramkumar, J. Mao et al., “Elevated urinary leukotriene E levels are associated with hospitalization for pain in children with sickle cell disease,” American Journal of Hematology, vol. 83, no. 8, pp. 640–643, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. J. M. Drazen and K. F. Austen, “Leukotrienes and airway responses,” American Review of Respiratory Disease, vol. 136, no. 4, pp. 985–998, 1987. View at Scopus
  59. M. D. Thompson, J. Takasaki, V. Capra et al., “G-protein-coupled receptors and asthma endophenotypes: the cysteinyl leukotriene system in perspective,” Molecular Diagnosis and Therapy, vol. 10, no. 6, pp. 353–366, 2006. View at Scopus
  60. K. H. In, K. Asano, D. Beier et al., “Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription,” Journal of Clinical Investigation, vol. 99, no. 5, pp. 1130–1137, 1997. View at Scopus
  61. S. Vikman, R. M. Brena, P. Armstrong, J. Hartiala, C. B. Stephensen, and H. Allayee, “Functional analysis of 5-lipoxygenase promoter repeat variants,” Human Molecular Genetics, vol. 18, no. 23, pp. 4521–4529, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. O. Kalayci, E. Birben, C. Sackesen et al., “ALOX5 promoter genotype, asthma severity and LTC production by eosinophils,” Allergy, vol. 61, no. 1, pp. 97–103, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. N. Patel, C. S. Gonsalves, M. Yang, P. Malik, and V. K. Kalra, “Placenta growth factor induces 5-lipoxygenase-activating protein to increase leukotriene formation in sickle cell disease,” Blood, vol. 113, no. 5, pp. 1129–1138, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. N. Perelman, S. K. Selvaraj, S. Batra et al., “Placenta growth factor activates monocytes and correlates with sickle cell disease severity,” Blood, vol. 102, no. 4, pp. 1506–1514, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. R. J. Freishtat, S. F. Iqbal, D. K. Pillai et al., “High prevalence of vitamin D deficiency among inner-city African American youth with asthma in Washington, DC,” Journal of Pediatrics, vol. 156, no. 6, pp. 948–952, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. R. Beasley, “The burden of asthma with specific reference to the United States,” Journal of Allergy and Clinical Immunology, vol. 109, no. 5, pp. S482–S489, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. C. A. Camargo Jr., S. L. Rifas-Shiman, A. A. Litonjua et al., “Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age,” American Journal of Clinical Nutrition, vol. 85, no. 3, pp. 788–795, 2007. View at Scopus
  68. J. M. Brehm, J. C. Celedón, M. E. Soto-Quiros et al., “Serum vitamin D levels and markers of severity of childhood asthma in Costa Rica,” American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 9, pp. 765–771, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. E. R. Sutherland, E. Goleva, L. P. Jackson, A. D. Stevens, and D. Y. M. Leung, “Vitamin D levels, lung function, and steroid response in adult asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 181, no. 7, pp. 699–704, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. B. M. Goodman III, N. Artz, B. Radford, and I. A. Chen, “Prevalence of vitamin D deficiency in adults with sickle cell disease,” Journal of the National Medical Association, vol. 102, no. 4, pp. 332–335, 2010. View at Scopus
  71. E. Chapelon, M. Garabedian, V. Brousse, J. C. Souberbielle, J. L. Bresson, and M. de Montalembert, “Osteopenia and vitamin D deficiency in children with sickle cell disease,” European Journal of Haematology, vol. 83, no. 6, pp. 572–578, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. A. J. Rovner, V. A. Stallings, D. A. Kawchak, J. I. Schall, K. Ohene-Frempong, and B. S. Zemel, “High risk of vitamin D deficiency in children with sickle cell disease,” Journal of the American Dietetic Association, vol. 108, no. 9, pp. 1512–1516, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. A. H. Adewoye, T. C. Chen, Q. Ma et al., “Sickle cell bone disease: response to vitamin D and calcium,” American Journal of Hematology, vol. 83, no. 4, pp. 271–274, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. A. Lal, E. B. Fung, Z. Pakbaz, E. Hackney-Stephens, and E. P. Vichinsky, “Bone mineral density in children with sickle cell anemia,” Pediatric Blood and Cancer, vol. 47, no. 7, pp. 901–906, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. A. M. Buison, D. A. Kawchak, J. Schall, K. Ohene-Frempong, V. A. Stallings, and B. S. Zemel, “Low vitamin D status in children with sickle cell disease,” Journal of Pediatrics, vol. 145, no. 5, pp. 622–627, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. J. Stinson and B. Naser, “Pain management in children with sickle cell disease,” Pediatric Drugs, vol. 5, no. 4, pp. 229–241, 2003. View at Scopus
  77. S. L. Yoon and S. Black, “Comprehensive, integrative management of pain for patients with sickle-cell disease,” Journal of Alternative and Complementary Medicine, vol. 12, no. 10, pp. 995–1001, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. H. Farquhar, A. Stewart, E. Mitchell et al., “The role of paracetamol in the pathogenesis of asthma,” Clinical and Experimental Allergy, vol. 40, no. 1, pp. 32–41, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. R. W. Beasley, T. O. Clayton, J. Crane, et al., “Acetaminophen use and risk of asthma, rhinoconjunctivitis and eczema in adolescents: ISAAC phase three,” American Journal of Respiratory and Critical Care Medicine. In press.
  80. R. Beasley, T. Clayton, J. Crane et al., “Association between paracetamol use in infancy and childhood, and risk of asthma, rhinoconjunctivitis, and eczema in children aged 6-7 years: analysis from Phase Three of the ISAAC programme,” The Lancet, vol. 372, no. 9643, pp. 1039–1048, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. V. W. Persky, “Acetaminophen and Asthma,” Thorax, vol. 65, no. 2, pp. 99–100, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. M. S. Perzanowski, R. L. Miller, D. Tang et al., “Prenatal acetaminophen exposure and risk of wheeze at age 5 years in an urban low-income cohort,” Thorax, vol. 65, no. 2, pp. 118–123, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. EPR 3. National Asthma Education and Prevention Program, Expert Panel Report 3: Guidelines for the diagnosis and management of asthma, U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, Md, USA, August 2007, no. 08-4051.
  84. J. J. Field and M. R. DeBaun, “Asthma and sickle cell disease: two distinct diseases or part of the same process?” Hematology/American Society of Hematology. Education Program, pp. 45–53, 2009. View at Scopus
  85. S. A. Schroeder and A. G. Nepo, “Treatment of asthma in children with sickle cell disease can prevent recurrences of acute chest syndrome,” American Journal of Respiratory and Critical Care Medicine, vol. 177, article A262, 2008.
  86. C. G. Giuntini and P. L. Paggiaro, “Present state of the controversy about regular inhaled β-agonists in asthma,” European Respiratory Journal, vol. 8, no. 5, pp. 673–678, 1995. View at Scopus
  87. M. R. Sears, R. M. Sly, and R. O'Donnell, “Relationships between asthma mortality and treatment,” Annals of Allergy, vol. 70, no. 5, pp. 425–426, 1993. View at Scopus
  88. W. H. Inman and A. M. Adelstein, “Rise and fall of asthma mortality in England and Wales in relation to use of pressurised aerosols,” Lancet, vol. 2, no. 7615, pp. 279–285, 1969. View at Scopus
  89. N. Pearce, R. Beasley, J. Crane, C. Burgess, and R. Jackson, “End of the New Zealand asthma mortality epidemic,” Lancet, vol. 345, no. 8941, pp. 41–44, 1995. View at Scopus
  90. W. O. Spitzer, S. Suissa, P. Ernst et al., “The use of β-agonists and the risk of death and near death from asthma,” New England Journal of Medicine, vol. 326, no. 8, pp. 501–506, 1992. View at Scopus
  91. J. M. Drazen, E. Israel, H. A. Boushey et al., “Comparison of regularly scheduled with as-needed use of albuterol in mild asthma,” New England Journal of Medicine, vol. 335, no. 12, pp. 841–847, 1996. View at Publisher · View at Google Scholar · View at PubMed
  92. S. A. Green, J. Turki, M. Innis, and S. B. Liggett, “Amino-terminal polymorphisms of the human β2-adrenergic receptor impart distinct agonist-promoted regulatory properties,” Biochemistry, vol. 33, no. 32, pp. 9414–9419, 1994.
  93. S. A. Green, J. Turki, P. Bejarano, I. P. Hall, and S. B. Liggett, “Influence of beta 2-adrenergic receptor genotypes on signal transduction in human airway smooth muscle cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 13, no. 1, pp. 25–33, 1995. View at Scopus
  94. E. Israel, J. M. Drazen, S. B. Liggett et al., “The effect of polymorphisms of the β2-adrenergic receptor on the response to regular use of albuterol in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 162, no. 1, pp. 75–80, 2000. View at Scopus
  95. D. R. Taylor, J. M. Drazen, G. P. Herbison, C. N. Yandava, R. J. Hancox, and G. I. Town, “Asthma exacerbations during long term β agonist use: influence of β2 adrenoceptor polymorphism,” Thorax, vol. 55, no. 9, pp. 762–767, 2000. View at Publisher · View at Google Scholar · View at Scopus
  96. D. K. C. Lee, C. E. Bates, and B. J. Lipworth, “Acute systemic effects of inhaled salbutamol in asthmatic subjects expressing common homozygous β2-adrenoceptor haplotypes at positions 16 and 27,” British Journal of Clinical Pharmacology, vol. 57, no. 1, pp. 100–104, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. R. J. Hancox, M. R. Sears, and D. R. Taylor, “Polymorphism of the β2-adrenoceptor and the response to long-term β-agonist therapy in asthma,” European Respiratory Journal, vol. 11, no. 3, pp. 589–593, 1998. View at Scopus
  98. E. Israel, V. M. Chinchilli, J. G. Ford et al., “Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebo-controlled cross-over trial,” Lancet, vol. 364, no. 9444, pp. 1505–1512, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. G. A. Hawkins, K. Tantisira, D. A. Meyers et al., “Sequence, haplotype, and association analysis of ADRβ2 in a multiethnic asthma case-control study,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 10, pp. 1101–1109, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. E. R. Bleecker, R. M. Lawrance, H. J. Ambrose, and M. Goldman, “Beta2-adrenergic receptor gene polymorphisms: is Arg/Arg genotype associated with serious adverse events during treatment with budesonide and formoterol in one pressurized metered-dose inhaler (BUD/FM pMDI) within racial groups?” American Journal of Respiratory and Critical Care Medicine, vol. 177, article A775, 2008.
  101. K. Blake, R. Madabushi, H. Derendorf, and J. Lima, “Population pharmacodynamic model of bronchodilator response to inhaled albuterol in children and adults with asthma,” Chest, vol. 134, no. 5, pp. 981–989, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. G. E. Hardie, J. K. Brown, and W. M. Gold, “Adrenergic responsiveness: FEV1 and symptom differences in Whites and African Americans with mild asthma,” Journal of Asthma, vol. 44, no. 8, pp. 621–628, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. P. Thottathil, J. Acharya, A. J. Moss et al., “Risk of cardiac events in patients with asthma and long-QT syndrome treated with beta2 agonists,” American Journal of Cardiology, vol. 102, no. 7, pp. 871–874, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. S. R. Salpeter, T. M. Ormiston, and E. E. Salpeter, “Cardiovascular effects of β-agonists in patients with asthma and COPD: a meta-analysis,” Chest, vol. 125, no. 6, pp. 2309–2321, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. B. U. Mueller, K. J. Martin, W. Dreyer, L. I. Bezold, and D. H. Mahoney, “Prolonged QT interval in pediatric sickle cell disease,” Pediatric Blood and Cancer, vol. 47, no. 6, pp. 831–833, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. F. Akgül, E. Seyfeli, I. Melek et al., “Increased QT dispersion in sickle cell disease: effect of pulmonary hypertension,” Acta Haematologica, vol. 118, no. 1, pp. 1–6, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. H. W. Kelly, “Non-corticosteroid therapy for long-term control of asthma,” Expert Opinion on Pharmacotherapy, vol. 8, no. 13, pp. 2077–2087, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. B. A. Rohrman and D. A. Mazziotti, “Quantum chemical design of hydroxyurea derivatives for the treatment of sickle-cell anemia,” Journal of Physical Chemistry B, vol. 109, no. 27, pp. 13392–13396, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  109. J. Haynes Jr., B. Obiako, J. A. King, R. B. Hester, and S. Ofori-Acquah, “Activated neutrophil-mediated sickle red blood cell adhesion to lung vascular endothelium: role of phosphatidylserine-exposed sickle red blood cells,” American Journal of Physiology, vol. 291, no. 4, pp. H1679–H1685, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. S. Kuvibidila, B. S. Baliga, R. Gardner et al., “Differential effects of hydroxyurea and zileuton on interleukin-13 secretion by activated murine spleen cells: implication on the expression of vascular cell adhesion molecule-1 and vasoocclusion in sickle cell anemia,” Cytokine, vol. 30, no. 5, pp. 213–218, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  111. J. Haynes Jr., B. S. Baliga, B. Obiako, S. Ofori-Acquah, and B. Pace, “Zileuton induces hemoglobin F synthesis in erythroid progenitors: role of the L-arginine-nitric oxide signaling pathway,” Blood, vol. 103, no. 10, pp. 3945–3950, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  112. J. Haynes Jr. and B. Obiako, “Activated polymorphonuclear cells increase sickle red blood cell retention in lung: role of phospholipids,” American Journal of Physiology, vol. 282, no. 1, pp. H122–H130, 2002. View at Scopus
  113. K. V. Blake, “Montelukast: data from clinical trials in the management of asthma,” Annals of Pharmacotherapy, vol. 33, no. 12, pp. 1299–1314, 1999. View at Scopus
  114. G. P. Currie and K. McLaughlin, “The expanding role of leukotriene receptor antagonists in chronic asthma,” Annals of Allergy, Asthma and Immunology, vol. 97, no. 6, pp. 731–741, 2006. View at Scopus
  115. J. J. Lima, S. Zhang, A. Grant et al., “Influence of leukotriene pathway polymorphisms on response to montelukast in asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 4, pp. 379–385, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  116. K. Malmstrom, G. Rodriguez-Gomez, J. Guerra et al., “Oral montelukast, inhaled beclomethasone, and placebo for chronic asthma: a randomized, controlled trial,” Annals of Internal Medicine, vol. 130, no. 6, pp. 487–495, 1999.
  117. S. J. Szefler, B. R. Phillips, F. D. Martinez et al., “Characterization of within-subject responses to fluticasone and montelukast in childhood asthma,” Journal of Allergy and Clinical Immunology, vol. 115, no. 2, pp. 233–242, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  118. M. Klotsman, T. P. York, S. G. Pillai et al., “Pharmacogenetics of the 5-lipoxygenase biosynthetic pathway and variable clinical response to montelukast,” Pharmacogenetics and Genomics, vol. 17, no. 3, pp. 189–196, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  119. E. B. Mougey, H. Feng, M. Castro, C. G. Irvin, and J. J. Lima, “Absorption of montelukast is transporter mediated: a common variant of OATP2B1 is associated with reduced plasma concentrations and poor response,” Pharmacogenetics and Genomics, vol. 19, no. 2, pp. 129–138, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  120. J. J. Telleria, A. Blanco-Quiros, D. Varillas et al., “ALOX5 promoter genotype and response to montelukast in moderate persistent asthma,” Respiratory Medicine, vol. 102, no. 6, pp. 857–861, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  121. B. Knorr, S. Holland, J. D. Rogers, H. H. Nguyen, and T. F. Reiss, “Montelulkast adult (10-mg film-coated tablet) and pediatric (5-mg chewable tablet) dose selections,” Journal of Allergy and Clinical Immunology, vol. 106, no. 3, pp. S171–S178, 2000. View at Scopus
  122. C. G. Irvin, D. A. Kaminsky, N. R. Anthonisen et al., “Clinical trial of low-dose theophylline and montelukast in patients with poorly controlled asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 175, no. 3, pp. 235–242, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  123. D. A. Revicki, N. K. Leidy, F. Brennan-Diemer, S. Sorensen, and A. Togias, “Integrating patient preferences into health outcomes assessment: the multiattribute asthma symptom utility index,” Chest, vol. 114, no. 4, pp. 998–1007, 1998. View at Scopus
  124. G. Philip, C. Hustad, G. Noonan et al., “Reports of suicidality in clinical trials of montelukast,” Journal of Allergy and Clinical Immunology, vol. 124, no. 4, pp. 691–696.e6, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  125. G. Philip, C. M. Hustad, M. P. Malice et al., “Analysis of behavior-related adverse experiences in clinical trials of montelukast,” Journal of Allergy and Clinical Immunology, vol. 124, no. 4, pp. 699–706.e8, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  126. J. T. Holbrook and R. Harik-Khan, “Montelukast and emotional well-being as a marker for depression: results from 3 randomized, double-masked clinical trials,” Journal of Allergy and Clinical Immunology, vol. 122, no. 4, pp. 828–829, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  127. C. L. Edwards, M. Green, C. C. Wellington et al., “Depression, suicidal ideation, and attempts in black patients with sickle cell disease,” Journal of the National Medical Association, vol. 101, no. 11, pp. 1090–1095, 2009. View at Scopus
  128. J. U. Ohaeri, W. A. Shokunbi, K. S. Akinlade, and L. O. Dare, “The psychosocial problems of sickle cell disease sufferers and their methods of coping,” Social Science and Medicine, vol. 40, no. 7, pp. 955–960, 1995. View at Publisher · View at Google Scholar · View at Scopus
  129. W. Castle, R. Fuller, J. Hall, and J. Palmer, “Serevent nationwide surveillance study: comparison of salmeterol with salbutamol in asthmatic patients who require regular bronchodilator treatment,” British Medical Journal, vol. 306, no. 6884, pp. 1034–1037, 1993. View at Scopus
  130. H. S. Nelson, S. T. Weiss, E. K. Bleecker, S. W. Yancey, and P. M. Dorinsky, “The salmeterol multicenter asthma research trial: a comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol,” Chest, vol. 129, no. 1, pp. 15–26, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  131. S. R. Salpeter, N. S. Buckley, T. M. Ormiston, and E. E. Salpeter, “Meta-analysis: effect of long-acting β-agonists on severe asthma exacerbations and asthma-related deaths,” Annals of Internal Medicine, vol. 144, no. 12, pp. 904–912, 2006.
  132. S. R. Salpeter, A. J. Wall, and N. S. Buckley, “Long-acting beta-agonists with and without inhaled corticosteroids and catastrophic asthma events,” American Journal of Medicine, vol. 123, no. 4, pp. 322–328.e2, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  133. M. Mann, B. Chowdhury, E. Sullivan, R. Nicklas, R. Anthracite, and R. J. Meyer, “Serious asthma exacerbations in asthmatics treated with high-dose formoterol,” Chest, vol. 124, no. 1, pp. 70–74, 2003. View at Publisher · View at Google Scholar · View at Scopus
  134. J. M. Kramer, “Balancing the benefits and risks of inhaled long-acting beta-agonists—the influence of values,” New England Journal of Medicine, vol. 360, no. 16, pp. 1592–1595, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  135. E. R. Bleecker, S. W. Yancey, L. A. Baitinger et al., “Salmeterol response is not affected by β2-adrenergic receptor genotype in subjects with persistent asthma,” Journal of Allergy and Clinical Immunology, vol. 118, no. 4, pp. 809–816, 2006. View at Publisher · View at Google Scholar · View at PubMed
  136. E. R. Bleecker, D. S. Postma, R. M. Lawrance, D. A. Meyers, H. J. Ambrose, and M. Goldman, “Effect of ADRB2 polymorphisms on response to longacting β2-agonist therapy: a pharmacogenetic analysis of two randomised studies,” Lancet, vol. 370, no. 9605, pp. 2118–2125, 2007. View at Publisher · View at Google Scholar · View at PubMed
  137. E. R. Bleecker, R. Lawrance, H. Ambrose, and M. Goldman, “Beta2-adrenergic receptor Gly16Arg variation: effect on response to budesonide/formoterol (BUD/FM) or budesonide (BUD; post-formoterol) in children and adolescents with asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 177, article A776, 2008.
  138. W. Anderson, S. A. Bacanu, E. R. Bleecker, et al., “A prospective haplotype analysis of beta2-adrenergic receptor polymorphisms and clinical response to salmeterol and salmeterol/fluticasone propionate,” American Journal of Respiratory and Critical Care Medicine, vol. 177, article A775, 2008.
  139. M. E. Wechsler, S. J. Kunselman, V. M. Chinchilli et al., “Effect of β2-adrenergic receptor polymorphism on response to longacting β2 agonist in asthma (LARGE trial): a genotype-stratified, randomised, placebo-controlled, crossover trial,” The Lancet, vol. 374, no. 9703, pp. 1754–1764, 2009. View at Publisher · View at Google Scholar
  140. E. R. Bleecker, H. S. Nelson, M. Kraft et al., “β2-receptor polymorphisms in patients receiving salmeterol with or without fluticasone propionate,” American Journal of Respiratory and Critical Care Medicine, vol. 181, no. 7, pp. 676–687, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  141. K. Blake, “Theophylline,” in Pediatric Asthma, S. Murphy and H. W. Kelly, Eds., pp. 363–431, Marcel Dekker, New York, 1999.
  142. R. Kumar, S. Qureshi, P. Mohanty, S. P. Rao, and S. T. Miller, “A short course of prednisone in the management of acute chest syndrome of sickle cell disease,” Journal of Pediatric Hematology/Oncology, vol. 32, no. 3, pp. e91–e94, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  143. A. Sobota, D. A. Graham, M. M. Heeney, and E. J. Neufeld, “Corticosteroids for acute chest syndrome in children with sickle cell disease: variation in use and association with length of stay and readmission,” American Journal of Hematology, vol. 85, no. 1, pp. 24–28, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  144. D. S. Darbari, O. Castro, J. G. Taylor et al., “Severe vaso-occlusive episodes associated with use of systemic corticosteroids in patients with sickle cell disease,” Journal of the National Medical Association, vol. 100, no. 8, pp. 948–951, 2008. View at Scopus
  145. J. J. Strouse, C. M. Takemoto, J. R. Keefer, G. J. Kato, and J. F. Casella, “Corticosteroids and increased risk of readmission after acute chest syndrome in children with sickle cell disease,” Pediatric Blood and Cancer, vol. 50, no. 5, pp. 1006–1012, 2008. View at Publisher · View at Google Scholar · View at PubMed
  146. M. S. Isakoff, J. A. Lillo, and J. N. Hagstrom, “A single-institution experience with treatment of severe acute chest syndrome: lack of rebound pain with dexamethasone plus transfusion therapy,” Journal of Pediatric Hematology/Oncology, vol. 30, no. 4, pp. 322–325, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  147. M. P. Celano, J. F. Linzer, A. Demi et al., “Treatment adherence among low-income, african american children with persistent asthma,” Journal of Asthma, vol. 47, no. 3, pp. 317–322, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  148. L. Hendeles, M. Asmus, and S. Chesrown, “What is the role of budesonide inhalation suspension for nebulization?” The Journal of Pediatric Pharmacology and Therapeutics, vol. 6, pp. 162–166, 2001.
  149. C. Rand, A. Bilderback, K. Schiller, J. M. Edelman, C. M. Hustad, and R. S. Zeiger, “Adherence with montelukast or fluticasone in a long-term clinical trial: results from the mild asthma montelukast versus inhaled corticosteroid trial,” Journal of Allergy and Clinical Immunology, vol. 119, no. 4, pp. 916–923, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus