About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2008 (2008), Article ID 151487, 4 pages
http://dx.doi.org/10.1155/2008/151487
Research Article

High-Efficiency Intracavity Continuous-Wave Green-Light Generation by Quasiphase Matching in a Bulk Periodically Poled MgO: L i N b O 3 Crystal

1Division of Opto-Electronics System, Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100085, China
2Graduate University of Chinese Academy of Sciences (GUCAS), Beijing 100080, China
3R&D Department, Phoebus Vision Opto-Electronics Technology Ltd., Beijing 100094, China

Received 29 March 2008; Accepted 18 August 2008

Academic Editor: Yalin Lu

Copyright © 2008 Shaowei Chu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE Journal of Quantum Electronics, vol. 28, no. 11, pp. 2631–2654, 1992. View at Publisher · View at Google Scholar
  2. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Optics Letters, vol. 22, no. 24, pp. 1834–1836, 1997. View at Publisher · View at Google Scholar
  3. S. Kurimura, N. E. Yu, Y. Nomura, M. Nakamura, K. Kitamura, and T. Sumiyoshi, “QPM wavelength converters based on stoichiometric lithium tantalate,” in Advanced Solid-State Photonics (ASSP '05), vol. 98, pp. 92–96, Optical Society of America, Vienna, Austria, February 2005.
  4. N. Pavel, I. Shoji, T. Taira, et al., “Room-temperature, continuous-wave 1-W green power by single-pass frequency doubling in a bulk periodically poled MgO:LiNbO3 crystal,” Optics Letters, vol. 29, no. 8, pp. 830–832, 2004. View at Publisher · View at Google Scholar
  5. S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Applied Physics Letters, vol. 90, no. 5, Article ID 051115, 3 pages, 2007. View at Publisher · View at Google Scholar
  6. L. Y. Liu, M. Oka, W. Wiechmann, and S. Kubota, “Longitudinally diode-pumped continuous-wave 3.5-W green laser,” Optics Letters, vol. 19, no. 3, pp. 189–191, 1994.
  7. V. Pruneri, J. Webjörn, P. St. J. Russell, J. R. M. Barr, and D. C. Hanna, “Intracavity second harmonic generation of 0.532 μm in bulk periodically poled lithium niobate,” Optics Communications, vol. 116, no. 1–3, pp. 159–162, 1995. View at Publisher · View at Google Scholar
  8. K. S. Abedin, T. Tsuritani, M. Sato, and H. Ito, “Integrated intracavity quasi-phase-matched second harmonic generation based on periodically poled Nd:LiTaO3,” Applied Physics Letters, vol. 70, no. 1, pp. 10–12, 1997. View at Publisher · View at Google Scholar
  9. M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, and G. Huber, “Generation of 740 mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO4 crystal,” Optics Letters, vol. 24, no. 4, pp. 205–207, 1999. View at Publisher · View at Google Scholar