About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2008 (2008), Article ID 684349, 52 pages
http://dx.doi.org/10.1155/2008/684349
Review Article

Holographic Polymer-Dispersed Liquid Crystals: Materials, Formation, and Applications

School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798

Received 29 August 2008; Accepted 30 November 2008

Academic Editor: H. Kwok

Copyright © 2008 Y. J. Liu and X. W. Sun. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. L. Rosen, Fundamental Principles of Polymeric Materials, John Wiley & Sons, New York, NY, USA, 1993.
  2. M. Hasegawa, “Response time improvement of the in-plane-switching mode,” in Proceedings of the International Symposium Digest of Technical Papers (SID '97), vol. 28, pp. 699–702, Santa Ana, Calif, USA, January-June 1997.
  3. M. J. Escuti, C. C. Bowley, G. P. Crawford, and S. Žumer, “Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization,” Applied Physics Letters, vol. 75, no. 21, pp. 3264–3266, 1999. View at Publisher · View at Google Scholar
  4. R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels,” Journal of Applied Physics, vol. 68, no. 9, pp. 4406–4412, 1990. View at Publisher · View at Google Scholar
  5. R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels with negative dielectric anisotropy,” Molecular Crystals and Liquid Crystals, vol. 213, pp. 117–131, 1992. View at Publisher · View at Google Scholar
  6. H. Ren and S.-T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Applied Physics Letters, vol. 81, no. 8, pp. 1432–1434, 2002. View at Publisher · View at Google Scholar
  7. F. Du and S.-T. Wu, “Curing temperature effects on liquid crystal gels,” Applied Physics Letters, vol. 83, no. 7, pp. 1310–1312, 2003. View at Publisher · View at Google Scholar
  8. J. L. Ferguson, “Polymer encapsulated nematic liquid crystals for display and light control applications,” in Proceedings of the International Symposium Digest of Technical Papers (SID '85), vol. 16, pp. 68–70, San Jose, Calif, USA, 1985.
  9. J. W. Doane, N. A. Vaz, B.-G. Wu, and S. Žumer, “Field controlled light scattering from nematic microdroplets,” Applied Physics Letters, vol. 48, no. 4, pp. 269–271, 1986. View at Publisher · View at Google Scholar
  10. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Applied Physics Letters, vol. 64, no. 9, pp. 1074–1076, 1994. View at Publisher · View at Google Scholar
  11. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annual Review of Materials Science, vol. 30, pp. 83–115, 2000. View at Publisher · View at Google Scholar
  12. D. Gabor, “A new microscopic principle,” Nature, vol. 161, no. 4098, pp. 777–778, 1948. View at Publisher · View at Google Scholar
  13. D. Gabor, “Microscopy by reconstructed wavefronts,” Proceedings of The Royal Society of London A, vol. 197, pp. 454–487, 1949.
  14. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chemistry of Materials, vol. 5, no. 10, pp. 1533–1538, 1993. View at Publisher · View at Google Scholar
  15. R. Asquini, A. d'Alessandro, C. Gizzi, et al., “Optical characterization at wavelengths of 632.8 NM and 15498 NM of policryps switchable diffraction gratings,” Molecular Crystals and Liquid Crystals, vol. 398, pp. 223–233, 2003. View at Publisher · View at Google Scholar
  16. G. Abbate, A. Marino, and F. Vita, “Policryps characterization in the near infrared,” Molecular Crystals and Liquid Crystals, vol. 398, pp. 269–280, 2003. View at Publisher · View at Google Scholar
  17. A. d'Alessandro, R. Asquini, C. Gizzi, et al., “Electro-optic properties of switchable gratings made of polymer and nematic liquid-crystal slices,” Optics Letters, vol. 29, no. 12, pp. 1405–1407, 2004. View at Publisher · View at Google Scholar
  18. R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Optics Letters, vol. 29, no. 11, pp. 1261–1263, 2004. View at Publisher · View at Google Scholar
  19. R. Asquini, J. D'Angelo, and A. d'Alessandro, “A switchable optical add-drop multiplexer using ion-exchange waveguides and a POLICRYPS grating overlayer,” Molecular Crystals and Liquid Crystals, vol. 450, no. 1, pp. 203–214, 2006. View at Publisher · View at Google Scholar
  20. R. Caputo, L. De Sio, A. Veltri, C. P. Umeton, and A. V. Sukhov, “POLICRYPS switchable holographic grating: a promising grating electro-optical pixel for high resolution display application,” Journal of Display Technology, vol. 2, no. 1, pp. 38–51, 2006. View at Publisher · View at Google Scholar
  21. E. Lueder, R. Buerkle, M. Muecke, R. Klette, R. Bunz, and T. Kallfass, “Flexible and bistable FLC and cholesteric displays on plastic substrates for mobile applications and smart cards,” Journal of the Society for Information Display, vol. 7, no. 1, pp. 29–35, 1999. View at Publisher · View at Google Scholar
  22. K. E. Maly, M. D. Wand, and R. P. Lemieux, “Bistable ferroelectric liquid crystal photoswitch triggered by a dithienylethene dopant,” Journal of the American Chemical Society, vol. 124, no. 27, pp. 7898–7899, 2002. View at Publisher · View at Google Scholar
  23. R. Karapinar, M. O'Neill, and M. Hird, “Polymer dispersed ferroelectric liquid crystal films with high electro-optic quality,” Journal of Physics D, vol. 35, no. 9, pp. 900–905, 2002. View at Publisher · View at Google Scholar
  24. J. N. Eakin, G. P. Crawford, and M. D. Radcliffe, “Morphological studies of holographically formed polymer dispersed ferroelectric liquid crystals,” Molecular Crystals and Liquid Crystals, vol. 429, pp. 277–287, 2005. View at Publisher · View at Google Scholar
  25. J. N. Eakin, G. P. Crawford, and M. D. Radcliffe, “Morphological studies of holographically formed polymer dispersed ferroelectric liquid crystals using elevated temperature exposure,” Molecular Crystals and Liquid Crystals, vol. 439, pp. 23–31, 2005. View at Publisher · View at Google Scholar
  26. S. J. Woltman, J. N. Eakin, G. P. Crawford, and S. Žumer, “Holographic diffraction gratings using polymer-dispersed ferroelectric liquid crystals,” Optics Letters, vol. 31, no. 22, pp. 3273–3275, 2006. View at Publisher · View at Google Scholar
  27. K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Applied Physics Letters, vol. 81, no. 25, pp. 4736–4738, 2002. View at Publisher · View at Google Scholar
  28. A. Y.-G. Fuh, C.-R. Lee, and T.-S. Mo, “Polarization holographic grating based on azo-dye-doped polymer-ball-type polymer-dispersed liquid crystals,” Journal of the Optical Society of America B, vol. 19, no. 11, pp. 2590–2594, 2002. View at Publisher · View at Google Scholar
  29. A. Y.-G. Fuh, C.-R. Lee, Y.-H. Ho, T.-S. Mo, and P.-M. Liu, “Study of a holographic grating based on dye-doped polymer-ball-type polymer-dispersed liquid crystal films,” Japanese Journal of Applied Physics, vol. 40, no. 12, pp. 6868–6871, 2001. View at Publisher · View at Google Scholar
  30. J. Y. Woo, E. H. Kim, B. K. Kim, and Y. H. Cho, “Morphology and switching of holographic gratings containing an azo dye,” Liquid Crystals, vol. 34, no. 4, pp. 527–533, 2007. View at Publisher · View at Google Scholar
  31. S. Žumer and S. Kralj, “Influence of k24 on the structure of nematic liquid crystal droplets,” Liquid Crystals, vol. 12, no. 4, pp. 613–624, 1992. View at Publisher · View at Google Scholar
  32. S. Kralj and S. Žumer, “Fréedericksz transitions in supra-μm nematic droplets,” Physical Review A, vol. 45, no. 4, pp. 2461–2470, 1992. View at Publisher · View at Google Scholar
  33. R. J. Ondris-Crawford, G. P. Crawford, S. Žumer, and J. W. Doane, “Curvature-induced configuration transition in confined nematic liquid crystals,” Physical Review Letters, vol. 70, no. 2, pp. 194–197, 1993. View at Publisher · View at Google Scholar
  34. P. Drzaic, “A new director alignment for droplets of nematic liquid crystal with low bend-to-splay ratio,” Molecular Crystals and Liquid Crystals, vol. 154, pp. 289–306, 1988. View at Publisher · View at Google Scholar
  35. H. Yuan, J. Colegrove, G. Hu, et al., “HPDLC color reflective displays,” in Cockpit Dispalys VI: Displays for Defence Applications, vol. 3690 of Proceedings of SPIE, pp. 196–206, Orlando, Fla, USA, April 1999. View at Publisher · View at Google Scholar
  36. G. P. Crawford, “Electrically switchable Bragg gratings,” Optics & Photonics News, no. 4, pp. 54–59, 14 2003.
  37. Y. Liu, B. Zhang, Y. Jia, and K. Xu, “Improvement of the diffraction properties in holographic polymer dispersed liquid crystal Bragg gratings,” Optics Communications, vol. 218, no. 1–3, pp. 27–32, 2003. View at Publisher · View at Google Scholar
  38. Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal-polymer composites,” Applied Physics Letters, vol. 86, no. 4, Article ID 041115, 3 pages, 2005. View at Publisher · View at Google Scholar
  39. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic formation of electro-optical polymer-liquid crystal photonic crystals,” Advanced Materials, vol. 14, no. 3, pp. 187–191, 2002. View at Publisher · View at Google Scholar
  40. Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Applied Physics Letters, vol. 89, no. 17, Article ID 171101, 3 pages, 2006. View at Publisher · View at Google Scholar
  41. S. P. Gorkhali, J. Qi, and G. P. Crawford, “Switchable quasi-crystal structures with five-, seven-, and ninefold symmetries,” Journal of the Optical Society of America B, vol. 23, no. 1, pp. 149–158, 2006. View at Publisher · View at Google Scholar
  42. R. Jakubiak, V. P. Tondiglia, L. V. Natarajan, et al., “Dynamic lasing from all-organic two-dimensional photonic crystals,” Advanced Materials, vol. 17, no. 23, pp. 2807–2811, 2005. View at Publisher · View at Google Scholar
  43. Y. J. Liu, X. W. Sun, P. Shum, et al., “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Applied Physics Letters, vol. 88, no. 6, Article ID 061107, 3 pages, 2006. View at Publisher · View at Google Scholar
  44. Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Effect of liquid crystal concentration on the lasing properties of dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Applied Physics Letters, vol. 90, no. 1, Article ID 011109, 3 pages, 2007. View at Publisher · View at Google Scholar
  45. Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets,” Applied Physics Letters, vol. 89, no. 1, Article ID 011111, 3 pages, 2006. View at Publisher · View at Google Scholar
  46. H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Applied Physics Letters, vol. 83, no. 8, pp. 1515–1517, 2003. View at Publisher · View at Google Scholar
  47. H. Ren, Y.-H. Fan, Y.-H. Lin, and S.-T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Optics Communications, vol. 247, no. 1–3, pp. 101–106, 2005. View at Publisher · View at Google Scholar
  48. L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, et al., “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chemistry of Materials, vol. 15, no. 12, pp. 2477–2484, 2003. View at Publisher · View at Google Scholar
  49. S.-T. Wu and A. Y.-G. Fuh, “Lasing in photonic crystals based on dye-doped holographic polymer-dispersed liquid crystal reflection gratings,” Japanese Journal of Applied Physics, vol. 44, no. 2, pp. 977–980, 2005. View at Publisher · View at Google Scholar
  50. D. C. Neckers, “Rose Bengal,” Journal of Photochemistry and Photobiology A, vol. 47, no. 1, pp. 1–29, 1989. View at Publisher · View at Google Scholar
  51. R. A. Ramsey and S. C. Sharma, “Switchable holographic gratings formed in polymer-dispersed liquid-crystal cells by use of a He-Ne laser,” Optics Letters, vol. 30, no. 6, pp. 592–594, 2005. View at Publisher · View at Google Scholar
  52. R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Ne laser,” Applied Physics Letters, vol. 88, no. 5, Article ID 051121, 3 pages, 2006. View at Publisher · View at Google Scholar
  53. P. Pilot, Y. Boiko, and T. V. Galstian, “Near-IR (800 to 855 nm) sensitive holographic photopolymer dispersed liquid crystal materials,” in Liquid Crystal Materials, Devices, and Applications VII, vol. 3635 of Proceedings of SPIE, pp. 143–150, San Jose, Calif, USA, January 1999. View at Publisher · View at Google Scholar
  54. K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting—part I,” Progress in Organic Coatings, vol. 48, no. 1, pp. 92–100, 2003. View at Publisher · View at Google Scholar
  55. K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting—part II,” Progress in Organic Coatings, vol. 48, no. 1, pp. 101–111, 2003. View at Publisher · View at Google Scholar
  56. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” Journal of Modern Optics, vol. 41, no. 10, pp. 1929–1939, 1994. View at Publisher · View at Google Scholar
  57. H. Oh, H. Lee, E. Kim, D. D. Do, and N. Kim, “Diffusion model of monomers in a photopolymer film for holographic recording,” in Organic Holographic Materials and Applications IV, vol. 6335 of Proceedings of SPIE, pp. 1–8, San Diego, Calif, USA, August 2006. View at Publisher · View at Google Scholar
  58. C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Applied Physics Letters, vol. 76, no. 16, pp. 2235–2237, 2000. View at Publisher · View at Google Scholar
  59. J. Qi, L. Li, M. De Sarkar, and G. P. Crawford, “Nonlocal photopolymerization effect in the formation of reflective holographic polymer-dispersed liquid crystals,” Journal of Applied Physics, vol. 96, no. 5, pp. 2443–2450, 2004. View at Publisher · View at Google Scholar
  60. A. Aslanyan and A. Galstyan, “Optimal period for diffraction gratings recorded in polymer dispersed liquid crystals,” Opto-Electronics Review, vol. 15, no. 1, pp. 66–70, 2007. View at Publisher · View at Google Scholar
  61. T. Kyu, D. Nwabunma, and H.-W. Chiu, “Theoretical simulation of holographic polymer-dispersed liquid-crystal films via pattern photopolymerization-induced phase separation,” Physical Review E, vol. 63, no. 6, Article ID 061802, 8 pages, 2001. View at Publisher · View at Google Scholar
  62. T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proceedings of the IEEE, vol. 73, no. 5, pp. 894–937, 1985. View at Publisher · View at Google Scholar
  63. M. Nevière and E. Popov, “Grating electromagnetic theory user guide,” Journal of Imaging Science and Technology, vol. 41, no. 4, pp. 315–323, 1997.
  64. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” The Bell System Technical Journal, vol. 48, no. 9, pp. 2909–2947, 1969.
  65. M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” Journal of Applied Physics, vol. 90, no. 8, pp. 3831–3837, 2001. View at Publisher · View at Google Scholar
  66. M. E. Holmes and M. S. Malcuit, “Controlling the anisotropy of holographic polymer-dispersed liquid-crystal gratings,” Physical Review E, vol. 65, no. 6, Article ID 066603, 4 pages, 2002. View at Publisher · View at Google Scholar
  67. J. J. Butler, M. S. Malcuit, and M. A. Rodriguez, “Diffractive properties of highly birefringent volume gratings: investigation,” Journal of the Optical Society of America B, vol. 19, no. 2, pp. 183–189, 2002. View at Publisher · View at Google Scholar
  68. D. E. Lucchetta, L. Criante, and F. Simoni, “Optical characterization of polymer dispersed liquid crystals for holographic recording,” Journal of Applied Physics, vol. 93, no. 12, pp. 9669–9674, 2003. View at Publisher · View at Google Scholar
  69. D. E. Lucchetta, L. Criante, and F. Simoni, “Determination of small anisotropy of holographic phase gratings,” Optics Letters, vol. 28, no. 9, pp. 725–727, 2003. View at Publisher · View at Google Scholar
  70. R. L. Sutherland, L. V. Natarajan, T. J. Bunning, and V. P. Tondiglia, “Switchable holographic polymer-dispersed liquid crystals,” in Handbook of Advanced Electronic and Photonic Materials and Devices, H. S. Nalwa, Ed., vol. 7, chapter 2, Academic Press, San Diego, Calif, USA, 2001.
  71. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, B. L. Epling, and D. M. Brandelik, “Relation of electro-optical characteristics to materials properties and morphology in polymer-dispersed liquid crystal holographic gratings,” in Diffractive and Holographic Device Technologies and Applications IV, vol. 3010 of Proceedings of SPIE, pp. 142–149, San Jose, Calif, USA, February 1997. View at Publisher · View at Google Scholar
  72. F. Vita, D. E. Lucchetta, R. Castagna, O. Francescangeli, L. Criante, and F. Simoni, “Detailed investigation of high-resolution reflection gratings through angular-selectivity measurements,” Journal of the Optical Society of America B, vol. 24, no. 3, pp. 471–476, 2007. View at Publisher · View at Google Scholar
  73. R. L. Sutherland, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model,” Journal of the Optical Society of America B, vol. 19, no. 12, pp. 2995–3003, 2002. View at Publisher · View at Google Scholar
  74. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, et al., “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” Journal of the Optical Society of America B, vol. 19, no. 12, pp. 3004–3012, 2002. View at Publisher · View at Google Scholar
  75. F. Vita, A. Marino, V. Tkachenko, et al., “Visible and near-infrared characterization and modeling of nanosized holographic-polymer-dispersed liquid crystal gratings,” Physical Review E, vol. 72, no. 1, Article ID 011702, 8 pages, 2005. View at Publisher · View at Google Scholar
  76. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, R. Haaga, and W. W. Adams, “Effects of eliminating the chain extender and varying the grating periodicity on the morphology of holographically written Bragg gratings,” in Liquid Crystal Materials, Devices, and Applications IV, vol. 2651 of Proceedings of SPIE, pp. 44–55, San Jose, Calif, USA, January 1996. View at Publisher · View at Google Scholar
  77. B. K. Kim, Y. C. Jeon, C. O. Yoon, K. J. Kim, and Y. H. Cho, “Optimization of holographic PDLC for green,” Molecular Crystals and Liquid Crystals, vol. 368, pp. 87–96, 2001. View at Publisher · View at Google Scholar
  78. N. J. Crawford, M. D. Dadmun, T. J. Bunning, and L. V. Natarajan, “Time-resolved light scattering of the phase separation in polymer-dispersed liquid crystals formed by photo-polymerization induced phase separation,” Polymer, vol. 47, no. 18, pp. 6311–6321, 2006. View at Publisher · View at Google Scholar
  79. A. K. Fontecchio, C. C. Bowley, H. Yuan, and G. P. Crawford, “Effect of monomer functionality on performance of holographically-formed polymer dispersed liquid crystals,” Molecular Crystals and Liquid Crystals, vol. 352, pp. 399–406, 2000. View at Publisher · View at Google Scholar
  80. R. T. Pogue, L. V. Natarajan, S. A. Siwecki, V. P. Tondiglia, R. L. Sutherland, and T. J. Bunning, “Monomer functionality effects in the anisotropic phase separation of liquid crystals,” Polymer, vol. 41, no. 2, pp. 733–741, 2000. View at Publisher · View at Google Scholar
  81. M. De Sarkar, N. L. Gill, J. B. Whitehead, and G. P. Crawford, “Effect of monomer functionality on the morphology and performance of the holographic transmission gratings recorded on polymer dispersed liquid crystals,” Macromolecules, vol. 36, no. 3, pp. 630–638, 2003. View at Publisher · View at Google Scholar
  82. M. S. Park and B. K. Kim, “Transmission holographic gratings produced using networked polyurethane acrylates with various functionalities,” Nanotechnology, vol. 17, no. 8, pp. 2012–2017, 2006. View at Publisher · View at Google Scholar
  83. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, G. Dougherty, and R. L. Sutherland, “Morphology of anisotropic polymer-dispersed liquid crystals and the effect of monomer functionality,” Journal of Polymer Science Part B, vol. 35, no. 17, pp. 2825–2833, 1997. View at Publisher · View at Google Scholar
  84. T. J. White, W. B. Liechty, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and C. A. Guymon, “The influence of N-vinyl-2-pyrrolidinone in polymerization of holographic polymer dispersed liquid crystals (HPDLCs),” Polymer, vol. 47, no. 7, pp. 2289–2298, 2006. View at Publisher · View at Google Scholar
  85. P. Mormile, P. Musto, L. Petti, G. Ragosta, and P. Villano, “Electro-optical properties of a PDLC based on unsaturated polyester resin,” Applied Physics B, vol. 70, no. 2, pp. 249–252, 2000. View at Publisher · View at Google Scholar
  86. B. G. Wu, J. H. Erdman, and J. W. Doane, “Response times and voltages for PDLC light shutters,” Liquid Crystals, vol. 5, no. 5, pp. 1453–1465, 1989. View at Publisher · View at Google Scholar
  87. J. Colegrove, H. Yuan, S. T. Wu, J. R. Kelly, C. C. Bowley, and G. P. Crawford, “Drive-voltage reduction for HPDLC displays,” in Proceedings of the 6th International Display Workshops, pp. 105–108, Sendai, Japan, December 1999.
  88. S. S. Patnaik and R. Pachter, “Anchoring characteristics and interfacial interactions in a polymer dispersed liquid crystal: a molecular dynamics study,” Polymer, vol. 40, no. 23, pp. 6507–6519, 1999. View at Publisher · View at Google Scholar
  89. C. C. Bowley, P. Kossyrev, S. Danworaphong et al., “Improving the voltage response of holographically-formed polymer dispersed liquid crystals (H-PDLCs),” Molecular Crystals and Liquid Crystals, vol. 359, pp. 327–339, 2001.
  90. G. P. Crawford, R. J. Ondris-Crawford, J. W. Doane, and S. Žumer, “Systematic study of orientational wetting and anchoring at a liquid-crystal-surfactant interface,” Physical Review E, vol. 53, no. 4, pp. 3647–3661, 1996. View at Publisher · View at Google Scholar
  91. J. Y. Woo and B. K. Kim, “Surfactant effects on morphology and switching of holographic PDLCs based on polyurethane acrylates,” ChemPhysChem, vol. 8, no. 1, pp. 175–180, 2007. View at Publisher · View at Google Scholar
  92. M. D. Schulte, S. J. Clarson, L. V. Natarajan, C. A. Guymon, and T. J. Bunning, “Holographic polymer dispersed liquid crystals: effect of partial matrix fluorination on electro-optical and morphological properties,” in Proceedings of the Materials Research Society Symposium, vol. 709, pp. 211–216, Boston, Mass, USA, November 2002.
  93. M. De Sarkar, J. Qi, and G. P. Crawford, “Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings,” Polymer, vol. 43, no. 26, pp. 7335–7344, 2002. View at Publisher · View at Google Scholar
  94. R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Applied Optics, vol. 12, no. 12, pp. 2901–2908, 1973. View at Publisher · View at Google Scholar
  95. L. L. Brott, R. R. Naik, D. J. Pikas, et al., “Ultrafast holographic nanopatterning of biocatalytically formed silica,” Nature, vol. 413, no. 6853, pp. 291–293, 2001. View at Publisher · View at Google Scholar
  96. Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Optics Letters, vol. 30, no. 8, pp. 839–841, 2005. View at Publisher · View at Google Scholar
  97. Y. Tomita, K. Chikama, Y. Nohara, N. Suzuki, K. Furushima, and Y. Endoh, “Two-dimensional imaging of atomic distribution morphology created by holographically induced mass transfer of monomer molecules and nanoparticles in a silica-nanoparticle-dispersed photopolymer film,” Optics Letters, vol. 31, no. 10, pp. 1402–1404, 2006. View at Publisher · View at Google Scholar
  98. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Optics Express, vol. 14, no. 26, pp. 12712–12719, 2006. View at Publisher · View at Google Scholar
  99. W. S. Kim, Y.-C. Jeong, and J.-K. Park, “Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer,” Optics Express, vol. 14, no. 20, pp. 8967–8973, 2006. View at Publisher · View at Google Scholar
  100. R. Jakubiak, D. P. Brown, F. Vatansever, et al., “Holographic photopolymerization for fabrication of electrically switchable inorganic-organic hybrid photonic structures,” in Organic Photonic Materials and Devices V, vol. 4991 of Proceedings of SPIE, pp. 89–97, San Jose, Calif, USA, January 2003. View at Publisher · View at Google Scholar
  101. E. H. Kim, J. Y. Woo, and B. K. Kim, “Nanosized-silica-reinforced holographic polymer-dispersed liquid crystals,” Macromolecular Rapid Communications, vol. 27, no. 7, pp. 553–557, 2006. View at Publisher · View at Google Scholar
  102. H. Ren and S.-T. Wu, “Reflective reversed-mode polymer stabilized cholesteric texture light switches,” Journal of Applied Physics, vol. 92, no. 2, p. 797, 2002. View at Publisher · View at Google Scholar
  103. J. Ma, J. Song, Y.-G. Liu, S.-P. Ruan, and L. Xuan, “Holographic reversed-mode polymer-stabilized liquid crystal grating,” Chinese Physics Letters, vol. 22, no. 1, pp. 103–106, 2005. View at Publisher · View at Google Scholar
  104. K. Tanaka, K. Kato, S. Tsuru, and S. Sakai, “Holographically formed liquid-crystal/polymer device for reflective color display,” Journal of the Society for Information Display, vol. 2, no. 1, pp. 37–40, 1994. View at Publisher · View at Google Scholar
  105. C. Z. van Doorn, “Dynamic behavior of twisted nematic liquid-crystal layers in switched fields,” Journal of Applied Physics, vol. 46, no. 9, pp. 3738–3745, 1975. View at Publisher · View at Google Scholar
  106. D. W. Berreman, “Liquid-crystal twist cell dynamics with backflow,” Journal of Applied Physics, vol. 46, no. 9, pp. 3746–3751, 1975. View at Publisher · View at Google Scholar
  107. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, T. J. Bunning, and W. W. Adams, “Switchable holograms in new photopolymer-liquid crystal composite materials,” in Diffractive and Holographic Optics Technology II, vol. 2404 of Proceedings of SPIE, pp. 132–143, San Jose, Calif, USA, February 1995. View at Publisher · View at Google Scholar
  108. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, T. J. Bunning, and W. W. Adams, “Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film,” Optics Letters, vol. 20, no. 11, pp. 1325–1327, 1995. View at Publisher · View at Google Scholar
  109. S.-T. Wu and A.Y.-G. Fuh, “Electrical-frequency switchable multi-domain polymer dispersed liquid crystal Bragg mirror,” Japanese Journal of Applied Physics, vol. 45, no. 9, pp. 7011–7016, 2006. View at Publisher · View at Google Scholar
  110. L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, D. Tomlin, and T. J. Banning, “Electro-optical and morphological properties of bragg transmission gratings written in holographic polymer dispersed liquid crystals by thiol-ene photopolymerization,” in Proceedings of the Materials Research Society Symposium, vol. 776, pp. 225–230, San Francisco, Calif, USA, April 2003.
  111. A. F. Senyurt, G. Warren, J. B. Whitehead Jr., and C. E. Hoyle, “Matrix physical structure effect on the electro-optic characteristics of thiol-ene based H-PDLC films,” Polymer, vol. 47, no. 8, pp. 2741–2749, 2006. View at Publisher · View at Google Scholar
  112. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Optics Express, vol. 10, no. 20, pp. 1074–1082, 2002.
  113. H.-S. Kitzerow, “Dual-frequency addressable gratings based on polymer-dispersed liquid crystals,” Molecular Crystals and Liquid Crystals, vol. 321, pp. 457–472, 1998. View at Publisher · View at Google Scholar
  114. M. J. Escuti, J. Qi, and G. P. Crawford, “Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals,” Optics Letters, vol. 28, no. 7, pp. 522–524, 2003. View at Publisher · View at Google Scholar
  115. M. J. Escuti, J. Qi, and G. P. Crawford, “Two-dimensional tunable photonic crystal formed in a liquid-crystal/polymer composite: threshold behavior and morphology,” Applied Physics Letters, vol. 83, no. 7, pp. 1331–1333, 2003. View at Publisher · View at Google Scholar
  116. G. Yandek, S. Meng, G. Sigalov, and T. Kyu, “Three-dimensional switchable polymer photonic crystals via various optical wave interference techniques,” Liquid Crystals, vol. 33, no. 7, pp. 775–788, 2006. View at Publisher · View at Google Scholar
  117. T. Kyu, S. Meng, H. Duran, K. Nanjundiah, and G. R. Yandek, “Holographic polymer-dispersed liquid crystals and polymeric photonic crystals formed by holographic photolithography,” Macromolecular Research, vol. 14, no. 2, pp. 155–165, 2006.
  118. M. J. Escuti and G. P. Crawford, “Mesoscale three dimensional lattices formed in polymer dispersed liquid crystals: a diamond-like face centered cubic,” Molecular Crystals and Liquid Crystals, vol. 421, pp. 23–26, 2004. View at Publisher · View at Google Scholar
  119. S. P. Gorkhali, J. Qi, and G. P. Crawford, “Electrically switchable mesoscale Penrose quasicrystal structure,” Applied Physics Letters, vol. 86, no. 1, Article ID 011110, 3 pages, 2005. View at Publisher · View at Google Scholar
  120. M. J. Escuti and G. P. Crawford, “Holographic photonic crystals,” Optical Engineering, vol. 43, no. 9, pp. 1973–1987, 2004. View at Publisher · View at Google Scholar
  121. J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays, vol. 25, no. 5, pp. 177–186, 2004. View at Publisher · View at Google Scholar
  122. I. C. Khoo, Y. Z. Williams, B. Lewis, and T. Mallouk, “+-photorefractive CdSe and gold nanowire-doped liquid crystals and polymer-dispersed-liquid-crystal photonic crystals,” Molecular Crystals and Liquid Crystals, vol. 446, pp. 233–244, 2006. View at Publisher · View at Google Scholar
  123. X. H. Sun, X. M. Tao, T. J. Ye, P. Xue, and Y.-S. Szeto, “Optics design and fabrication of 3D electrically switchable hexagonal photonic crystal,” Applied Physics B, vol. 87, no. 1, pp. 65–69, 2007. View at Publisher · View at Google Scholar
  124. X. Sun, X. Tao, T. Ye, P. Xue, and Y.-S. Szeto, “2D and 3D electrically switchable hexagonal photonic crystal in the ultraviolet range,” Applied Physics B, vol. 87, no. 2, pp. 267–271, 2007. View at Publisher · View at Google Scholar
  125. V. Berger, O. Gauthier-Lafaye, and E. Costard, “Fabrication of a 2D photonic bandgap by a holographic method,” Electronics Letters, vol. 33, no. 5, pp. 425–426, 1997. View at Publisher · View at Google Scholar
  126. M. S. Li, S. T. Wu, and A. Y.-G. Fuh, “Superprism phenomenon based on holographic polymer dispersed liquid crystal films,” Applied Physics Letters, vol. 88, no. 9, Article ID 091109, 3 pages, 2006. View at Publisher · View at Google Scholar
  127. P. P. Markowicz, V. K. S. Hsiao, H. Tiryaki, et al., “Enhancement of third-harmonic generation in a polymer-dispersed liquid-crystal grating,” Applied Physics Letters, vol. 87, no. 5, Article ID 051102, 3 pages, 2005. View at Publisher · View at Google Scholar
  128. R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, “Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: a new approach for active photonic bandgap materials,” Advanced Materials, vol. 15, no. 3, pp. 241–244, 2003. View at Publisher · View at Google Scholar
  129. D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, “Wavelength flipping in laser emission driven by a switchable holographic grating,” Applied Physics Letters, vol. 84, no. 6, pp. 837–839, 2004. View at Publisher · View at Google Scholar
  130. D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, “Light amplification by dye-doped holographic polymer dispersed liquid crystals,” Applied Physics Letters, vol. 84, no. 24, pp. 4893–4895, 2004. View at Publisher · View at Google Scholar
  131. D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, “Compact lasers based on HPDLC gratings,” Molecular Crystals and Liquid Crystals, vol. 441, pp. 97–109, 2005. View at Publisher · View at Google Scholar
  132. S. J. Woltman, M. E. Sousa, H. Zhang, and G. P. Crawford, “Survey of switchable lasing configurations using structures of liquid crystal and polymer dispersions,” in Liquid Crystal Materials, Devices, and Applications XI, vol. 6135 of Proceedings of SPIE, pp. 1–12, San Jose, Calif, USA, January 2006. View at Publisher · View at Google Scholar
  133. R. Jakubiak, L. V. Natarajan, V. Tondiglia, et al., “Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystals,” Applied Physics Letters, vol. 85, no. 25, pp. 6095–6097, 2004. View at Publisher · View at Google Scholar
  134. G. S. He, T.-C. Lin, V. K. S. Hsiao, et al., “Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element,” Applied Physics Letters, vol. 83, no. 14, pp. 2733–2735, 2003. View at Publisher · View at Google Scholar
  135. V. K. S. Hsiao, C. Lu, G. S. He, et al., “High contrast switching of distributed-feedback lasing in dye-doped H-PDLC transmission grating structures,” Optics Express, vol. 13, no. 10, pp. 3787–3794, 2005. View at Publisher · View at Google Scholar
  136. S.-T. Wu, “Birefringence dispersions of liquid crystals,” Physical Review A, vol. 33, no. 2, pp. 1270–1274, 1986. View at Publisher · View at Google Scholar
  137. N. G. Sultanova, S. N. Kasarova, C. D. Ivanov, and I. D. Nikolov, “Refractive data of optical plastics for laser applications,” in Holography 2005: International Conference on Holography, Optical Recording, and Processing of Information, vol. 6252 of Proceedings of SPIE, pp. 1–5, Varna, Bulgaria, May 2006. View at Publisher · View at Google Scholar
  138. J. Qi, M. De Sarkar, G. T. Warren, and G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” Journal of Applied Physics, vol. 91, no. 8, p. 4795, 2002. View at Publisher · View at Google Scholar
  139. K. Rai and A. K. Fontecchio, “Optimization of pressure response in HPDLC gratings based on polymer composition,” Molecular Crystals and Liquid Crystals, vol. 450, no. 1, pp. 183–190, 2006. View at Publisher · View at Google Scholar
  140. D. R. Cairns, C. C. Bowley, S. Danworaphong, et al., “Optical strain characteristics of holographically formed polymer-dispersed liquid crystal films,” Applied Physics Letters, vol. 77, no. 17, pp. 2677–2679, 2000. View at Publisher · View at Google Scholar
  141. M. L. Ermold, K. Rai, and A. K. Fontecchio, “Hydrostatic pressure response of polymer-dispersed liquid crystal gratings,” Journal of Applied Physics, vol. 97, no. 10, 4 pages, 2005. View at Publisher · View at Google Scholar
  142. V. K. S. Hsiao, W. D. Kirkey, F. Chen, A. N. Cartwright, P. N. Prasad, and T. J. Bunning, “Organic solvent vapor detection using holographic photopolymer reflection gratings,” Advanced Materials, vol. 17, no. 18, pp. 2211–2214, 2005. View at Publisher · View at Google Scholar
  143. M. H. Keefe, J. L. O'Donnell, R. C. Bailey, S. T. Nguyen, and J. T. Hupp, “Permeable, microporous polymeric membrane materials constructed from discrete molecular squares,” Advanced Materials, vol. 15, no. 22, pp. 1936–1939, 2003. View at Publisher · View at Google Scholar
  144. M. Fally, I. Drevensek-Olenik, M. A. Ellabban, K. P. Pranzas, and J. Vollbrandt, “Colossal light-induced refractive-index modulation for neutrons in holographic polymer-dispersed liquid crystals,” Physical Review Letters, vol. 97, no. 16, Article ID 167803, 4 pages, 2006. View at Publisher · View at Google Scholar
  145. I. Drevensek-Olenik, M. A. Ellabban, M. Fally, K. P. Pranzas, and J. Vollbrandt, “Neutron diffraction from holographic polymer-dispersed liquid crystals,” in Liquid Crystals and Applications in Optics, vol. 6587 of Proceedings of SPIE, pp. 1–6, Prague, Czech Republic, April 2007. View at Publisher · View at Google Scholar
  146. A. K. Fontecchio, G. P. Crawford, C. He, and D. Content, “Performance improvements for switchable H-PDLC gratings using morphological studies,” in Solar and Switching Materials, vol. 4458 of Proceedings of SPIE, pp. 230–239, San Diego, Calif, USA, August 2001. View at Publisher · View at Google Scholar
  147. A. Ashkin, G. D. Boyd, J. M. Dziedzic, et al., “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Applied Physics Letters, vol. 9, no. 1, pp. 72–74, 1966. View at Publisher · View at Google Scholar
  148. F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Applied Physics Letters, vol. 13, no. 7, pp. 223–225, 1968. View at Publisher · View at Google Scholar
  149. F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” Journal of Applied Physics, vol. 40, no. 8, pp. 3389–3396, 1969. View at Publisher · View at Google Scholar
  150. M. A. Ellabban, M. Fally, H. Uršič, and I. Drevensek-Olenik, “Holographic scattering in photopolymer-dispersed liquid crystals,” Applied Physics Letters, vol. 87, no. 15, Article ID 151101, 3 pages, 2005. View at Publisher · View at Google Scholar
  151. M. A. Ellabban, I. Drevensek-Olenik, M. Fally, and H. Uršič, “Effect of electric field and temperature on holographic scattering from holographic polymer-dispersed liquid crystals,” Optical Materials, vol. 29, no. 11, pp. 1416–1422, 2007. View at Publisher · View at Google Scholar
  152. S. Harbour, J. V. Kelly, T. Galstian, and J. T. Sheridan, “Optical birefringence and anisotropic scattering in acrylate based holographic polymer dispersed liquid crystals,” Optics Communications, vol. 278, no. 1, pp. 28–33, 2007. View at Publisher · View at Google Scholar
  153. M. R. B. Forshaw, “Explanation of the two-ring diffraction phenomenon observed by Moran and Kaminow,” Applied Optics, vol. 13, no. 1, p. 2, 1974. View at Publisher · View at Google Scholar
  154. M. A. Ellabban, M. Fally, M. Imlau, T. Woike, R. A. Rupp, and T. Granzow, “Angular and wavelength selectivity of parasitic holograms in cerium doped strontium barium niobate,” Journal of Applied Physics, vol. 96, no. 12, pp. 6987–6993, 2004. View at Publisher · View at Google Scholar
  155. T. Karasawa and Y. Taketomi, “Effects of material systems on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Japanese Journal of Applied Physics, vol. 36, no. 10, pp. 6388–6392, 1997. View at Publisher · View at Google Scholar
  156. M. S. Park, Y. H. Cho, B. K. Kim, and J. S. Jang, “Fabrication of reflective holographic gratings with polyurethane acrylate (PUA),” Current Applied Physics, vol. 2, no. 3, pp. 249–252, 2002. View at Publisher · View at Google Scholar
  157. G. T. Warren, M. DeSarkar, J. Qi, and G. P. Crawford, “In-situ spectroscopy of holographically formed polymer dispersed liquid crystal materials for high performance reflective display applications,” in Proceedings of the International Symposium Digest of Technical Papers (SID '01), vol. 3, pp. 866–869, San Jose, Calif, USA, June 2001. View at Publisher · View at Google Scholar
  158. E. Y. Shin, J. A. Jung, E. H. Kim, and B. K. Kim, “Holographic polymer-dispersed liquid crystal fabrication under electric field,” Polymer International, vol. 54, no. 6, pp. 922–925, 2005. View at Publisher · View at Google Scholar
  159. J. Colegrove, T. Fiske, A. Lewis, et al., “The effect of monomer functionality on HPDLC performance and aging,” in Proceedings of the International Symposium Digest of Technical Papers (SID '01), vol. 32, pp. 962–965, San Jose, Calif, USA, June 2001. View at Publisher · View at Google Scholar