About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2009 (2009), Article ID 924340, 9 pages
http://dx.doi.org/10.1155/2009/924340
Research Article

Transmission Performance Analysis of Fiber Optical Parametric Amplifiers for WDM System

State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China

Received 12 January 2009; Accepted 2 March 2009

Academic Editor: Samir K. Mondal

Copyright © 2009 Xiaohong Jiang and Chun Jiang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, no. 3, pp. 506–520, 2002. View at Publisher · View at Google Scholar
  2. K. K. Y. Wong, K. Shimizu, M. E. Marhic, K. Uesaka, G. Kalogerakis, and L. G. Kazovsky, “Continuous-wave fiber optical parametric wavelength converter with +40-dB conversion efficiency and a 3.8-dB noise figure,” Optics Letters, vol. 28, no. 9, pp. 692–694, 2003. View at Publisher · View at Google Scholar
  3. Y. Su, L. Wang, A. Agarwal, and P. Kumar, “Wavelength-tunable all-optical clock recovery using a fiber-optic parametric oscillator,” Optics Communications, vol. 184, no. 1, pp. 151–156, 2000. View at Publisher · View at Google Scholar
  4. L. Wang, Y. Su, A. Agarwal, and P. Kumar, “Synchronously mode-locked fiber laser based on parametric gain modulation and soliton shaping,” Optics Communications, vol. 194, no. 4–6, pp. 313–317, 2001. View at Publisher · View at Google Scholar
  5. R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE Journal of Quantum Electronics, vol. 18, no. 7, pp. 1062–1072, 1982. View at Publisher · View at Google Scholar
  6. P. L. Voss and P. Kumar, “Raman-noise-induced noise-figure limit for χ(3) parametric amplifiers,” Optics Letters, vol. 29, no. 5, pp. 445–447, 2004. View at Publisher · View at Google Scholar
  7. P. L. Voss and P. Kumar, “Raman-effect induced noise limits on χ(3) parametric amplifiers and wavelength converters,” Journal of Optics B, vol. 6, no. 8, pp. S762–S770, 2004. View at Publisher · View at Google Scholar
  8. K. Inoue, T. Kominato, and H. Toba, “Tunable gain equalization using a Mach-Zehnder optical filter in multistage fiber amplifiers,” IEEE Photonics Technology Letters, vol. 3, no. 8, pp. 718–720, 1991. View at Publisher · View at Google Scholar
  9. R. Tang, P. L. Voss, J. Lasri, P. Devgan, and P. Kumar, “Noise-figure limit of fiber-optical parametric amplifiers and wavelength converters: experimental investigation,” Optics Letters, vol. 29, no. 20, pp. 2372–2374, 2004. View at Publisher · View at Google Scholar
  10. N. R. Newbury, “Raman gain: pump-wavelength dependence in single-mode fiber,” Optics Letters, vol. 27, no. 14, pp. 1232–1234, 2002. View at Publisher · View at Google Scholar
  11. R. H. Stolen, J. P. Gordon, W. T. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” Journal of the Optical Society of America B, vol. 6, no. 6, pp. 1159–1166, 1989. View at Publisher · View at Google Scholar
  12. D. Marcuse, “Calculation of bit-error probability for a lightwave system with optical amplifiers and post-detection Gaussian noise,” Journal of Lightwave Technology, vol. 9, no. 4, pp. 505–513, 1991. View at Publisher · View at Google Scholar
  13. O. K. Tonguz and F. A. Flood, “EDFA-based DWDM lightwave transmission systems with end-to-end power and SNR equalization,” IEEE Transactions on Communications, vol. 50, no. 8, pp. 1282–1292, 2002. View at Publisher · View at Google Scholar