About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2011 (2011), Article ID 106276, 10 pages
http://dx.doi.org/10.1155/2011/106276
Research Article

Investigation of Annealing and Blend Concentration Effects of Organic Solar Cells Composed of Small Organic Dye and Fullerene Derivative

1Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
2Research Center for Nano-Device and System, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

Received 17 March 2011; Accepted 7 May 2011

Academic Editor: Surya Prakash Singh

Copyright © 2011 Yasser A. M. Ismail et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Y. Chen, J. Hou, S. Zhang et al., “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nature Photonics, vol. 3, no. 11, pp. 649–653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science, vol. 258, no. 5087, pp. 1474–1476, 1992. View at Scopus
  3. S. H. Park, A. Roy, S. Beaupré et al., “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nature Photonics, vol. 3, no. 5, pp. 297–303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Jiang Jr., W. F. Burgoyne, and L. M. Robeson, “Sequestration of electroactive materials in a high Tg, insulating polymer matrix for optoelectronic applications—part 2. Photovoltaic devices,” Polymer, vol. 47, no. 11, pp. 4124–4131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. A. M. Ismail, T. Soga, and T. Jimbo, “The contribution of coumarin 6 in light harvesting and photocurrent of P3HT:PCBM bulk heterojunction solar cell,” Solar Energy Materials and Solar Cells, vol. 94, no. 8, pp. 1406–1411, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Hara, T. Sato, R. Katoh et al., “Molecular design of coumarin dyes for efficient dye-sensitized solar cells,” Journal of Physical Chemistry B, vol. 107, no. 2, pp. 597–606, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Hara, M. Kurashige, Y. Dan-Oh et al., “Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells,” New Journal of Chemistry, vol. 27, no. 5, pp. 783–785, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Montali, A. R. A. Palmans, J. Bras et al., “Depolarizing energy transfer in photoluminescent polymer blends,” Synthetic Metals, vol. 115, no. 1, pp. 41–45, 2000. View at Publisher · View at Google Scholar
  9. Y. Takahashi, A. Maeda, K. Kojima, and K. Uchida, “Luminescence of dyes doped in a sol-gel coating film,” Journal of Luminescence, vol. 87, pp. 767–769, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. A. F. Mansour, H. M. A. Killa, S. Abd El-Wanees, and M. Y. El-Sayed, “Laser dyes doped with poly(ST-Co-MMA) as fluorescent solar collectors and their field performance,” Polymer Testing, vol. 24, no. 4, pp. 519–525, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. A. F. Mansour, “Photostability and optical parameters of copolymer styrene/MMA as a matrix for the dyes used in fluorescent solar collectors,” Polymer Testing, vol. 23, no. 3, pp. 247–252, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Kandavelu, H. S. Huang, J. L. Jian, T. C. K. Yang, K. L. Wang, and S. T. Huang, “Novel iminocoumarin dyes as photosensitizers for dye-sensitized solar cell,” Solar Energy, vol. 83, no. 4, pp. 574–581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. J. Brites, C. Santos, S. Nascimento, B. Gigante, and M. Berberan-Santos, “Synthesis of [60]fullerene-coumarin polyads,” Tetrahedron Letters, vol. 45, no. 37, pp. 6927–6930, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. R. M. Meixner, H. Göbel, F. A. Yildirim, W. Bauhofer, and W. Krautschneider, “Wavelength-selective organic field-effect phototransistors based on dye-doped poly-3-hexylthiophene,” Applied Physics Letters, vol. 89, no. 9, Article ID 092110, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. C. C. Wu, J. C. Sturm, M. E. Thompson, R. A. Register, E. P. Dana, and J. Tian, “Efficient organic electroluminescent devices using single layer doped polymer thin films with bipolar carrier transport abilities,” IEEE Transactions on Electron Devices, vol. 44, no. 8, pp. 1269–1281, 1997. View at Scopus
  16. T. Yamanari, T. Taima, J. Sakai, and K. Saito, “Origin of the open-circuit voltage of organic thin-film solar cells based on conjugated polymers,” Solar Energy Materials and Solar Cells, vol. 93, no. 6-7, pp. 759–761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. T. Lloyd, A. C. Mayer, S. Subramanian et al., “Efficient solution-processed photovoltaic cells based on an anthradithiophene/fullerene blend,” Journal of the American Chemical Society, vol. 129, no. 29, pp. 9144–9149, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. A. B. Tamayo, X. D. Dang, B. Walker, J. Seo, T. Kent, and T. Q. Nguyen, “A low band gap, solution processable oligothiophene with a dialkylated diketopyrrolopyrrole chromophore for use in bulk heterojunction solar cells,” Applied Physics Letters, vol. 94, no. 10, pp. 103301–103303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Sakai, T. Taima, T. Yamanari, and K. Saito, “Annealing effect in the sexithiophene: C70 small molecule bulk heterojunction organic photovoltaic cells,” Solar Energy Materials and Solar Cells, vol. 93, no. 6-7, pp. 1149–1153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Zhao, Z. Xie, Y. Qu, Y. Geng, and L. Wang, “Effects of thermal annealing on polymer photovoltaic cells with buffer layers and in situ formation of interfacial layer for enhancing power conversion efficiency,” Synthetic Metals, vol. 158, no. 21-24, pp. 908–911, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” Journal of Applied Physics, vol. 98, no. 4, pp. 043704–043708, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Vanlaeke, A. Swinnen, I. Haeldermans et al., “P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics,” Solar Energy Materials and Solar Cells, vol. 90, no. 14, pp. 2150–2158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Kim, W. W. So, and S. J. Moon, “Effect of thermal annealing on the performance of P3HT/PCBM polymer photovoltaic cells,” Journal of the Korean Physical Society, vol. 48, no. 3, pp. 441–445, 2006. View at Scopus
  24. Y. A. M. Ismail, T. Soga, and T. Jimbo, “Photovoltaic properties of bulk heterojunction organic solar cell composed of coumarin 6 dye as light harvester and donor material,” Japanese Journal of Applied Physics, vol. 49, no. 5, Article ID 052301, pp. 1–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. W. J. Yoon, K. Y. Jung, J. Liu et al., “Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles,” Solar Energy Materials and Solar Cells, vol. 94, no. 2, pp. 128–132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. M. Chang, W. Su, and L. Wang, “Influence of photo-induced degradation on the optoelectronic properties of regioregular poly(3-hexylthiophene),” Solar Energy Materials and Solar Cells, vol. 92, no. 7, pp. 761–765, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Kazim, M. Zulfequar, M. M. Haq, P. K. Bhatnagar, and M. Husain, “Electrical and optical properties of thin films based on poly [2-methoxy-5 (2'-ethyl hexyloxy)-1,4-phenylene vinylene] doped with acridine orange dye with possible photovoltaic applications,” Solar Energy Materials and Solar Cells, vol. 91, no. 15-16, pp. 1462–1466, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. J. Dittmer, R. Lazzaroni, P. Leclère et al., “Crystal network formation in organic solar cells,” Solar Energy Materials and Solar Cells, vol. 61, no. 1, pp. 53–61, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. X. M. Jiang, R. Osterbacka, O. J. Korovyanko et al., “Spectroscopic studies of photoexcitations in regioregular and regiorandom polythiophene films,” Advanced Functional Materials, vol. 12, no. 9, pp. 587–597, 2002. View at Publisher · View at Google Scholar
  30. H. Hoppe, M. Niggemann, C. Winder et al., “Nanoscale morphology of conjugated polymer/fullerene based bulk-heterojunction solar cells,” Advanced Functional Materials, vol. 14, no. 10, pp. 1005–1011, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. C. D. Dimitrakopoulos and D. J. Mascaro, “Organic thin-film transistors: a review of recent advances,” IBM Journal of Research and Development, vol. 45, no. 1, pp. 11–27, 2001. View at Scopus
  32. H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” Journal of Materials Research, vol. 19, no. 7, pp. 1924–1945, 2004. View at Publisher · View at Google Scholar · View at Scopus