About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2011 (2011), Article ID 197549, 14 pages
http://dx.doi.org/10.1155/2011/197549
Review Article

From Spheric to Aspheric Solid Polymer Lenses: A Review

1Institute of Mechanical and Electrical Engineering, Ming Chi University of Technology, Taipei 24301, Taiwan
2iVIEW SBU/CIS-Pixel, Novatek Microelectronics Corporation, Hsinchu 300, Taiwan
3Engineering and System Science Deptartment, NanoEngineering and MicroSystems Institute, National Tsing Hua University, Hsinchu 30013, Taiwan
4Division of Mechanics, Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan

Received 9 May 2011; Accepted 27 June 2011

Academic Editor: Eric Pei Yu Chiou

Copyright © 2011 Kuo-Yung Hung et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. Pan, C. M. Wang, W. S. Sun, and J. Y. Chang, “Portable digital micromirror device projector using a prism,” Applied Optics, vol. 46, no. 22, pp. 5097–5102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Applied Physics Letters, vol. 85, no. 7, pp. 1128–1130, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. B. H. W. Hendriks, M. A. J. Van As, and A. A. M. Van Alem, “Miniaturised high-numerical aperture singlet plastic objective for optical recording,” Japanese Journal of Applied Physics A, vol. 44, no. 9, pp. 6564–6567, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Ke, X. Yi, J. Lai, and S. Chen, “Research on hybrid integration technology between charge-coupled devices and diffractive microlens arrays,” Journal of Micromechanics and Microengineering, vol. 14, no. 1, pp. 125–128, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Measurement Science and Technology, vol. 1, no. 8, article 016, pp. 759–766, 1990. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Optics Express, vol. 15, no. 12, pp. 7140–7145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Yang, C. K. Chao, T. H. Lin, and C. P. Lin, “Fabrication of microlens array with graduated sags using UV proximity printing method,” Microsystem Technologies, vol. 12, no. 1-2, pp. 82–90, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Sakurai, S. Okuda, H. Nishiguchi, N. Nagayama, and M. Yokoyama, “Microlens array fabrication based on polymer electrodeposition,” Journal of Materials Chemistry, vol. 13, no. 8, pp. 1862–1864, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. K. H. Jeong, G. L. Lin, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” in Proceedings of the 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS '04), pp. 37–40, 2004.
  10. M. H. Wu, K. E. Paul, and G. M. Whitesides, “Patterning flood illumination with microlens arrays,” Applied Optics, vol. 41, no. 13, pp. 2575–2585, 2002. View at Scopus
  11. C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Optics Express, vol. 14, no. 9, pp. 4101–4106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Vallet, B. Berge, and L. Vovelle, “Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films,” Polymer, vol. 37, no. 12, pp. 2465–2470, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Optics Express, vol. 15, no. 12, pp. 7140–7145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Ren and S. T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect,” Optics Express, vol. 16, no. 4, pp. 2646–2652, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Optics Express, vol. 16, no. 19, pp. 14954–14960, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. K. -Y. Hung, F. -G. Tseng, and H. -S. Khoo, “Integrated three-dimensional optical MEMS for chip-based fluorescence detection,” Journal of Micromechanics and Microengineering, vol. 19, no. 4, Article ID 045014, pp. 1–10, 2009. View at Publisher · View at Google Scholar
  17. http://www.3m.com/index.jhtml.
  18. K. Y. Hung, F. G. Tseng, and T. H. Liao, “Electrostatic-force-modulated microaspherical lens for optical pickup head,” Journal of Microelectromechanical Systems, vol. 17, no. 2, pp. 370–380, 2008. View at Publisher · View at Google Scholar
  19. K. Y. Hung, L. W. Chang, F. G. Tseng, J. C. Chiou, and Y. Chiu, “Optimum electrostatic force control for fabricating a hybrid UV-curable aspheric lens,” Journal of Micromechanics and Microengineering, vol. 20, no. 7, Article ID 075001, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Y. Hung, C. C. Fan, F. G. Tseng, and Y. K. Chen, “Design and fabrication of a copolymer aspheric bi-convex lens utilizing thermal energy and electrostatic force in a dynamic fluidic,” Optics Express, vol. 18, no. 6, pp. 6014–6023, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. K.-Y. Hung, Y.-K. Chen, S.-H. Huang, and D.-C. Shye, “Molding and hot forming techniques for fabricating plastic aspheric lenses with high blue-light transmittance,” Microsystem Technologies, vol. 16, no. 8-9, pp. 1439–1444, 2010. View at Publisher · View at Google Scholar