About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2011 (2011), Article ID 237026, 10 pages
http://dx.doi.org/10.1155/2011/237026
Research Article

Optoelectronic Heating for Fabricating Microfluidic Circuitry

Mechanical and Aerospace Engineering Department, University of California, Los Angeles, Los Angeles, CA 90095, USA

Received 7 June 2011; Accepted 1 August 2011

Academic Editor: Eric Pei Yu Chiou

Copyright © 2011 Gauvain Haulot and Chih-Ming Ho. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. M. Chan, R. A. Mathies, and A. P. Alivisatos, “Size-controlled growth of CdSe nanocrystals in microfluidic reactors,” Nano Letters, vol. 3, no. 2, pp. 199–201, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. D. L. Huber, R. P. Manginell, M. A. Samara, B. I. Kim, and B. C. Bunker, “Programmed adsorption and release of proteins in a microfluidic device,” Science, vol. 301, no. 5631, pp. 352–354, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. M. U. Kopp, A. J. de Mello, and A. Manz, “Chemical amplification: continuous-flow PCR on a chip,” Science, vol. 280, no. 5366, pp. 1046–1048, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Sethu and C. H. Mastrangelo, “Polyethylene glycol (PEG)-based actuator for nozzle-diffuser pumps in plastic microfluidic systems,” Sensors and Actuators A, vol. 104, no. 3, pp. 283–289, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. E. Harmon, M. Tang, and C. W. Frank, “A microfluidic actuator based on thermoresponsive hydrogels,” Polymer, vol. 44, no. 16, pp. 4547–4556, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. N. T. Nguyen, T. H. Ting, Y. F. Yap et al., “Thermally mediated droplet formation in microchannels,” Applied Physics Letters, vol. 91, no. 8, Article ID 084102, 2007. View at Publisher · View at Google Scholar
  7. D. Ross and L. E. Locascio, “Microfluidic temperature gradient focusing,” Analytical Chemistry, vol. 74, no. 11, pp. 2556–2564, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. A. A. Darhuber, J. P. Valentino, S. M. Troian, and S. Wagner, “Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays,” Journal of Microelectromechanical Systems, vol. 12, no. 6, pp. 873–879, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophysical Journal, vol. 68, no. 5, pp. 2137–2144, 1995. View at Scopus
  10. M. N. Slyadnev, Y. Tanaka, M. Tokeshi, and T. Kitamori, “Photothermal temperature control of a chemical reaction on a microchip using an infrared diode laser,” Analytical Chemistry, vol. 73, no. 16, pp. 4037–4044, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. S. R. Sershen, G. A. Mensing, M. Ng, N. J. Halas, D. J. Beebe, and J. L. West, “Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels,” Advanced Materials, vol. 17, no. 11, pp. 1366–1368, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab on a Chip, vol. 11, no. 7, pp. 1389–1395, 2011. View at Publisher · View at Google Scholar · View at PubMed
  13. H. Yoshioka, M. Mikami, Y. Mori, and E. Tsuchida, “Synthetic hydrogel with thermoreversible gelation. I. preparation and rheological properties,” Journal of Macromolecular Science—Pure and Applied Chemistry, vol. A31, no. 1, pp. 113–120, 1994. View at Scopus
  14. H. Sugino, T. Arakawa, Y. Nara et al., “Integration in a multilayer microfluidic chip of 8 parallel cell sorters with flow control by sol-gel transition of thermoreversible gelation polymer,” Lab on a Chip, vol. 10, no. 19, pp. 2559–2565, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. M. Krishnan, J. Park, and D. Erickson, “Optothermorheological flow manipulation,” Optics Letters, vol. 34, no. 13, pp. 1976–1978, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. T. Ohta, A. Jamshidi, J. K. Valley, H. Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Applied Physics Letters, vol. 91, no. 7, Article ID 074103, 2007. View at Publisher · View at Google Scholar · View at PubMed
  17. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, vol. 436, no. 7049, pp. 370–372, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sensors and Actuators A, vol. 104, no. 3, pp. 222–228, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Haulot, A. J. Benahmed, and C. M. Ho, “Optoelectronic reconfigurable microchannels,” in Proceedings of the 24th International Conference on Micro Electro Mechanical Systems (MEMS '11), pp. 53–56, January 2011. View at Publisher · View at Google Scholar
  20. N. Attaf, M. S. Aida, and L. Hadjeris, “Thermal conductivity of hydrogenated amorphous silicon,” Solid State Communications, vol. 120, no. 12, pp. 525–530, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. H. J. Goldsmid, M. M. Kaila, and G. L. Paul, “Thermal conductivity of amorphous silicon,” Physica Status Solidi A, vol. 76, no. 1, pp. K31–K33, 1983. View at Scopus
  22. C. R. Wronski, D. E. Carlson, and R. E. Daniel, “Schottky-barrier characteristics of metal-amorphous-silicon diodes,” Applied Physics Letters, vol. 29, no. 9, pp. 602–605, 1976. View at Publisher · View at Google Scholar · View at Scopus
  23. D. E. Heller, R. M. Dawson, C. T. Malone, S. Nag, and C. R. Wronski, “Electron-transport mechanisms in metal Schottky barrier contacts to hydrogenated amorphous silicon,” Journal of Applied Physics, vol. 72, no. 6, pp. 2377–2384, 1992. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Szydlo, J. Magariño, and D. Kaplan, “Post-hydrogenated chemical vapor deposited amorphous silicon Schottky diodes,” Journal of Applied Physics, vol. 53, no. 7, pp. 5044–5051, 1982. View at Publisher · View at Google Scholar · View at Scopus
  25. S. M. Sze, Physics of Semiconductor Devices, Wiley, 3rd edition, 2007.
  26. T. Aoki, N. Ohrui, C. Fujihashi, and K. Shimakawa, “Enhancement of non-geminate electron-hole pair recombination induced by strong electric field in hydrogenated amorphous silicon (a-Si:H): effective-temperature concept,” Philosophical Magazine Letters, vol. 88, no. 1, pp. 9–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Jahn, R. Carius, and W. Fuhs, “Photoluminescence and photoconductivity of a-Si:H at high electric fields,” Journal of Non-Crystalline Solids, vol. 97-98, no. 1, pp. 575–578, 1987. View at Scopus
  28. W. Paul and D. A. Anderson, “Properties of amorphous hydrogenated silicon, with special emphasis on preparation by sputtering,” Solar Energy Materials, vol. 5, no. 3, pp. 229–316, 1981. View at Scopus
  29. J. A. Schmidt, R. R. Koropecki, R. D. Arce, F. A. Rubinelli, and R. H. Buitrago, “Energy-resolved photon flux dependence of the steady state photoconductivity in hydrogenated amorphous silicon: implications for the constant photocurrent method,” Thin Solid Films, vol. 376, no. 1-2, pp. 267–274, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Madan, W. Czubatyj, J. Yang, M. S. Shur, and M. P. Shaw, “Observation of two modes of current transport through phosphorus-doped amorphous hydrogenated silicon Schottky barriers,” Applied Physics Letters, vol. 40, no. 3, pp. 234–236, 1982. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Shimizu, “Staebler-Wronski effect in hydrogenated amorphous silicon and related alloy films,” Japanese Journal of Applied Physics Part 1, vol. 43, no. 6 A, pp. 3257–3268, 2004. View at Scopus