About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2011 (2011), Article ID 253989, 8 pages
http://dx.doi.org/10.1155/2011/253989
Research Article

An Optically Controlled 3D Cell Culturing System

Department of Electrical Engineering, University of Hawaii at Manoa, 2540 Dole Street, Holmes Hall 483, Honolulu, HI 96822, USA

Received 2 May 2011; Revised 25 August 2011; Accepted 12 September 2011

Academic Editor: Eric Pei Yu Chiou

Copyright © 2011 Kelly S. Ishii et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Dove, “Cell-based therapies go live,” Nature Biotechnology, vol. 20, no. 4, pp. 339–343, 2002. View at Publisher · View at Google Scholar
  2. K. H. Wilan, C. T. Scott, and S. Herrera, “Chasing a cellular fountain of youth,” Nature Biotechnology, vol. 23, no. 7, pp. 807–815, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. V. F. M. Segers and R. T. Lee, “Stem-cell therapy for cardiac disease,” Nature, vol. 451, no. 7181, pp. 937–942, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Xu, L. Liu, and I. G. Charles, “Microencapsulated iNOS-expressing cells cause tumor suppression in mice,” The FASEB Journal, vol. 16, no. 2, pp. 213–215, 2002. View at Scopus
  5. M. E. Dudley and S. A. Rosenberg, “Adoptive-cell-transfer therapy for the treatment of patients with cancer,” Nature Reviews Cancer, vol. 3, no. 9, pp. 666–675, 2003. View at Scopus
  6. L. Gattinoni, D. J. Powell, S. A. Rosenberg, and N. P. Restifo, “Adoptive immunotherapy for cancer: building on success,” Nature Reviews Immunology, vol. 6, no. 5, pp. 383–393, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Sun, X. Ma, D. Zhou, I. Vacek, and A. M. Sun, “Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression,” Journal of Clinical Investigation, vol. 98, no. 6, pp. 1417–1422, 1996. View at Scopus
  8. T. Sapir, K. Shternhall, I. Meivar-Levy et al., “Cell-replacement therapy for diabetes: generating functional insulin-producing tissue from adult human liver cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 22, pp. 7964–7969, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. J. Meier, A. Bhushan, and P. C. Butler, “The potential for stem cell therapy in diabetes,” Pediatric Research, vol. 59, no. 4, pp. 65R–73R, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. H. Wu, S. B. Huang, and G. B. Lee, “Microfluidic cell culture systems for drug research,” Lab on a Chip, vol. 10, no. 8, pp. 939–956, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Pharmaceutical Research and Manufacturers of America, Pharmaceutical Industry Profile2011, PhRMA, Washington, DC, USA, 2011, http://www.phrma.org/.
  12. U. Marx and V. Sandig, Drug Testing In Vitro: Breakthroughs and Trends in Cell Culture Technology, Wiley-VCH, Weinheim, Germany, 2007.
  13. J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature, vol. 442, no. 7101, pp. 403–411, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. S. Torisawa, H. Shiku, T. Yasukawa, M. Nishizawa, and T. Matsue, “Multi-channel 3-D cell culture device integrated on a silicon chip for anticancer drug sensitivity test,” Biomaterials, vol. 26, no. 14, pp. 2165–2172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. W. Hutmacher, “Biomaterials offer cancer research the third dimension,” Nature Materials, vol. 9, no. 2, pp. 90–93, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. B. A. Justice, N. A. Badr, and R. A. Felder, “3D cell culture opens new dimensions in cell-based assays,” Drug Discovery Today, vol. 14, no. 1-2, pp. 102–107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. R. C. Dutta and A. K. Dutta, “Cell-interactive 3D-scaffold; advances and applications,” Biotechnology Advances, vol. 27, no. 4, pp. 334–339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. L. H. Han, G. Mapili, S. Chen, and K. Roy, “Projection microfabrication of three-dimensional scaffolds for tissue engineering,” Journal of Manufacturing Science and Engineering, vol. 130, no. 2, article 021005, 4 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Chan, P. Zorlutuna, J. H. Jeong, H. Kong, and R. Bashir, “Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation,” Lab on a Chip, vol. 10, no. 16, pp. 2062–2070, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nature Reviews Drug Discovery, vol. 5, no. 3, pp. 210–218, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. V. L. Tsang and S. N. Bhatia, “Three-dimensional tissue fabrication,” Advanced Drug Delivery Reviews, vol. 56, no. 11, pp. 1635–1647, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. M. J. Powers, K. Domansky, M. R. Kaazempur-Mofrad et al., “A microfabricated array bioreactor for perfused 3D liver culture,” Biotechnology and Bioengineering, vol. 78, no. 3, pp. 257–269, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. S. A. Lee, S. E. Chung, W. Park, S. H. Lee, and S. Kwon, “Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography,” Lab on a Chip, vol. 9, no. 12, pp. 1670–1675, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. D. R. Albrecht, G. H. Underhill, T. B. Wassermann, R. L. Sah, and S. N. Bhatia, “Probing the role of multicellular organization in three-dimensional microenvironments,” Nature Methods, vol. 3, no. 5, pp. 369–375, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Braschler, R. Johann, M. Heule, L. Metref, and P. Renaud, “Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation,” Lab on a Chip, vol. 5, no. 5, pp. 553–559, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. H. Bae, T. Okano, and S. Wan Kim, “Temperature dependence of swelling of crosslinked poly(N,N'-alkyl substituted acrylamides) in water,” Journal of Polymer Science B, vol. 28, no. 6, pp. 923–936, 1990. View at Publisher · View at Google Scholar · View at Scopus
  27. R. A. Stile, W. R. Burghardt, and K. E. Healy, “Synthesis and characterization of injectable poly(N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro,” Macromolecules, vol. 32, no. 22, pp. 7370–7379, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. J. F. Pollock and K. E. Healy, “Mechanical and swelling characterization of poly(N-isopropyl acrylamide -co- methoxy poly(ethylene glycol) methacrylate) sol-gels,” Acta Biomaterialia, vol. 6, no. 4, pp. 1307–1318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. D. G. Grier, “A revolution in optical manipulation,” Nature, vol. 424, no. 6950, pp. 810–816, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. S. K. Mohanty, A. Rapp, S. Monajembashi, P. K. Gupta, and K. O. Greulich, “Comet assay measurements of DNA damage in cells by laser microbeams and trapping beams with wavelengths spanning a range of 308 nm to 1064 nm,” Radiation Research, vol. 157, no. 4, pp. 378–385, 2002. View at Scopus