About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2011 (2011), Article ID 357974, 7 pages
http://dx.doi.org/10.1155/2011/357974
Research Article

Quasi Solid-State Dye-Sensitized Solar Cell Incorporating Highly Conducting Polythiophene-Coated Carbon Nanotube Composites in Ionic Liquid

1Center of Excellence for Research in Engineering Materials (CEREM), College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
2Photovoltaic Materials Unit, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

Received 30 April 2011; Accepted 13 June 2011

Academic Editor: Ahmed El-Shafei

Copyright © 2011 Mohammad Rezaul Karim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at Scopus
  2. A. Hagfeld and M. Grätzel, “Light-induced redox reactions in nanocrystalline systems,” Chemical Reviews, vol. 95, no. 1, pp. 49–68, 1995. View at Scopus
  3. M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A, vol. 164, no. 1–3, pp. 3–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Hagfeldt and M. Grätzel, “Molecular photovoltaics,” Accounts of Chemical Research, vol. 33, no. 5, pp. 269–277, 2000. View at Publisher · View at Google Scholar
  5. M. K. Nazeeruddin, A. Kay, I. Rodicio et al., “Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes,” Journal of the American Chemical Society, vol. 115, no. 14, pp. 6382–6390, 1993. View at Scopus
  6. K. Hara, H. Sugihara, Y. Tachibana et al., “Dye-sensitized nanocrystalline TiO2 solar cells based on ruthenium(II) phenanthroline complex photosensitizers,” Langmuir, vol. 17, no. 19, pp. 5992–5999, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Bandara and H. Weerasinghe, “Solid-state dye-sensitized solar cell with p-type NiO as a hole collector,” Solar Energy Materials and Solar Cells, vol. 85, no. 3, pp. 385–390, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. G. K. R. Senadeera, T. Kitamura, Y. Wada, and S. Yanagida, “Enhanced photoresponses of polypyrrole on surface modified TiO2 with self-assembled monolayers,” Journal of Photochemistry and Photobiology A, vol. 184, no. 1-2, pp. 234–239, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. J. E. Kroeze, N. Hirata, L. Schmidt-Mende et al., “Parameters influencing charge separation in solid-state dye-sensitized solar cells using novel hole conductors,” Advanced Functional Materials, vol. 16, no. 14, pp. 1832–1838, 2006. View at Publisher · View at Google Scholar
  10. T. Kato, A. Okazaki, and S. Hayase, “Latent gel electrolyte precursors for quasi-solid dye sensitized solar cells the comparison of nano-particle cross-linkers with polymer cross-linkers,” Journal of Photochemistry and Photobiology A, vol. 179, no. 1-2, pp. 42–48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. N. Freitas, C. Longo, A. F. Nogueira, and M.-A. de Paoli, “Solar module using dye-sensitized solar cells with a polymer electrolyte,” Solar Energy Materials and Solar Cells, vol. 92, no. 9, pp. 1110–1114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Wu, Z. Lan, J. Lin et al., “A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells,” Advanced Materials, vol. 19, no. 22, pp. 4006–4011, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. N. Freitas, A. F. Nogueira, and M.-A. de Paoli, “New insights into dye-sensitized solar cells with polymer electrolytes,” Journal of Materials Chemistry, vol. 19, no. 30, pp. 5279–5294, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. B. I. Ito, J. N. De Freitas, M. A. De Paoli, and A. F. Nogueira, “Application of a composite polymer electrolyte based on montmorillonite in dye-sensitized solar cells,” Journal of the Brazilian Chemical Society, vol. 19, no. 4, pp. 688–696, 2008. View at Scopus
  15. P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar, and M. Grätzel, “Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 125, no. 5, pp. 1166–1167, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. H. Usui, H. Matsui, N. Tanabe, and S. Yanagida, “Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes,” Journal of Photochemistry and Photobiology A, vol. 164, no. 1–3, pp. 97–101, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Katakabe, R. Kawano, and M. Watanabe, “Acceleration of redox diffusion and charge-transfer rates in an ionic liquid with nanoparticle addition,” Electrochemical and Solid-State Letters, vol. 10, no. 6, pp. F23–F25, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. K. M. Lee, P. Y. Chen, C. P. Lee, and K. C. Ho, “Binary room-temperature ionic liquids based electrolytes solidified with SiO2 nanoparticles for dye-sensitized solar cells,” Journal of Power Sources, vol. 190, no. 2, pp. 573–577, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. C. P. Lee, K. M. Lee, P. Y. Chen, and K. C. Ho, “On the addition of conducting ceramic nanoparticles in solvent-free ionic liquid electrolyte for dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, vol. 93, no. 8, pp. 1411–1416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Chen, H. Yang, X. Li, F. Li, T. Yi, and C. Huang, “Thermostable succinonitrile-based gel electrolyte for efficient, long-life dye-sensitized solar cells,” Journal of Materials Chemistry, vol. 17, no. 16, pp. 1602–1607, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science, vol. 295, no. 5564, pp. 2425–2427, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. M. R. Karim, C. J. Lee, and M. S. Lee, “Synthesis and characterization of conducting polythiophene/carbon nanotubes composites,” Journal of Polymer Science A, vol. 44, no. 18, pp. 5283–5290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. M. R. Karim, C. J. Lee, Y.-T. Park, and M. S. Lee, “SWNTs coated by conducting polyaniline: synthesis and modified properties,” Synthetic Metals, vol. 151, no. 2, pp. 131–135, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Fu, Y. Zhu, R. Tan, and G. Shi, “Aligned polythiophene micro- and nanotubules,” Advanced Materials, vol. 13, no. 24, pp. 1874–1877, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. C.-P. Lee, P. Y. Chen, R. Vittal, and K.-C. Ho, “Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black,” Journal of Materials Chemistry, vol. 20, no. 12, pp. 2356–2361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. C.-P. Lee, L.-Y. Lin, P.-Y. Chen, R. Vittal, and K.-C. Ho, “All-solid-state dye-sensitized solar cells incorporating SWCNTs and crystal growth inhibitor,” Journal of Materials Chemistry, vol. 20, no. 18, pp. 3619–3625, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Wang, H. Li, B. Xue, Z. Wang, Q. Meng, and L. Chen, “Solid-state composite electrolyte Lil/3-hydroxypropionitrile/SiO2 for dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 127, no. 17, pp. 6394–6401, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. N. Ikeda, K. Teshima, and T. Miyasaka, “Conductive polymer-carbon-imidazolium composite: a simple means for constructing solid-state dye-sensitized solar cells,” Chemical Communications, no. 16, pp. 1733–1735, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. M. R. Karim, J. H. Yeum, M. S. Lee, and K. T. Lim, “Synthesis of conducting polythiophene composites with multi-walled carbon nanotube by the γ-radiolysis polymerization method,” Materials Chemistry and Physics, vol. 112, no. 3, pp. 779–782, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. M. K. Nazeeruddin, P. Péchy, T. Renouard et al., “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” Journal of the American Chemical Society, vol. 123, no. 8, pp. 1613–1624, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Ikeda, N. Koide, L. Han, A. Sasahara, and H. Onishi, “Scanning tunneling microscopy study of black dye and deoxycholic acid adsorbed on a rutile TiO2(110),” Langmuir, vol. 24, no. 15, pp. 8056–8060, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. Z. S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo, and K. Hara, “Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells: electron lifetime improved by coadsorption of deoxycholic acid,” Journal of Physical Chemistry C, vol. 111, no. 19, pp. 7224–7230, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Papageorgiou, Y. Athanassov, M. Armand et al., “The performance and stability of ambient temperature molten salts for solar cell applications,” Journal of the Electrochemical Society, vol. 143, no. 10, pp. 3099–3108, 1996. View at Scopus
  34. P. Wang, S. M. Zakeeruddin, J. E. Moser, R. H. Baker, and M. Grätzel, “A solvent-free, SeCN-/(SeCN)3based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells,” Journal of the American Chemical Society, vol. 126, no. 23, pp. 7164–7165, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. R. Kawano, H. Matsui, C. Matsuyama et al., “High performance dye-sensitized solar cells using ionic liquids as their electrolytes,” Journal of Photochemistry and Photobiology A, vol. 164, no. 1–3, pp. 87–92, 2004. View at Publisher · View at Google Scholar · View at Scopus