About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2011 (2011), Article ID 482741, 6 pages
http://dx.doi.org/10.1155/2011/482741
Research Article

Assembly of Carbon Nanotubes between Electrodes by Utilizing Optically Induced Dielectrophoresis and Dielectrophoresis

1Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
2Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan

Received 1 May 2011; Revised 30 June 2011; Accepted 6 July 2011

Academic Editor: Aaron T. Ohta

Copyright © 2011 Pei-Fang Wu and Gwo-Bin Lee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991. View at Scopus
  2. D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, “Chemistry of carbon nanotubes,” Chemical Reviews, vol. 106, no. 3, pp. 1105–1136, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Jorio, M. S. Dresselhaus, and G. Dresselhaus, Carbon Nanotubes, Springer, Berlin, Germany, 2008.
  4. J. Suehiro, G. Zhou, and M. Hara, “Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy,” Journal of Physics D, vol. 36, no. 21, pp. L109–L114, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Trojanowicz, “Analytical applications of carbon nanotubes: a review,” Trends in Analytical Chemistry, vol. 25, no. 5, pp. 480–489, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Q. Wei, R. Vajtai, Y. Jung, et al., “Organized assembly of carbon nanotubes,” Nature, vol. 416, no. 6880, pp. 495–496, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, “Fabricating carbon nanotube transistor device,” Nature, vol. 399, pp. 48–51, 1999.
  8. J. E. Fischer, W. Zhou, J. Vavro, et al., “Magnetically aligned single wall carbon nanotube films: preferred orientation and anisotropic transport properties,” Journal of Applied Physics, vol. 93, no. 4, pp. 2157–2163, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Huang, X. Duan, Q. Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science, vol. 291, no. 5504, pp. 630–633, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. S. G. Rao, L. Huang, W. Setyawan, and S. Hong, “Large-scale assembly of carbon nanotubes,” Nature, vol. 425, no. 6953, pp. 36–37, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. D. G. Grier, “A revolution in optical manipulation,” Nature, vol. 424, no. 6950, pp. 810–816, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. Liu, Z. Shen, T. Zhu, et al., “Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique,” Langmuir, vol. 16, no. 8, pp. 3569–3573, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Letters, vol. 4, no. 8, pp. 1415–1419, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. H. W. Seo, C. S. Han, D. G. Choi, K. S. Kim, and Y. H. Lee, “Controlled assembly of single SWNTs bundle using dielectrophoresis,” Microelectronic Engineering, vol. 81, no. 1, pp. 83–89, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Tung, H. Rokadia, and W. J. Li, “A micro shear stress sensor based on laterally aligned carbon nanotubes,” Sensors and Actuators A, vol. 133, no. 2, pp. 431–438, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Vijayaraghavan, S. Blatt, D. Weissenberger, et al., “Ultra-large-scale directed assembly of single-walled carbon nanotube devices,” Nano Letters, vol. 7, no. 6, pp. 1556–1560, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, vol. 436, no. 7049, pp. 370–372, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, et al., “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nature Photonics, vol. 2, no. 2, pp. 86–89, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. P. J. Pauzauskie, A. Jamshidi, J. K. Valley, J. H. Satcher, and M. C. Wu, “Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers,” Applied Physics Letters, vol. 95, no. 11, Article ID 113104, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. W. Lee, Y. H. Lin, and G. B. Lee, “Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces,” Microfluidics and Nanofluidics, vol. 8, no. 5, pp. 609–617, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. T. B. Jones, Electromechanics of Particles, Cambridge University Press, Cambridge, UK, 1995.
  22. D. J. Beebe, J. S. Moore, J. M. Bauer, et al., “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature, vol. 404, no. 6778, pp. 588–590, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nature Materials, vol. 4, no. 6, pp. 455–459, 2005. View at Publisher · View at Google Scholar · View at Scopus