About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2011 (2011), Article ID 539382, 5 pages
http://dx.doi.org/10.1155/2011/539382
Research Article

Novel Approach for the Synthesis of Nanocrystalline Anatase Titania and Their Photovoltaic Application

1International Center for Young Scientists, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
2Photovoltaics Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
3Center of Excellence for Research in Engineering Materials (CEREM), College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

Received 30 April 2011; Accepted 26 May 2011

Academic Editor: Idriss M. Bedja

Copyright © 2011 Pavuluri Srinivasu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Applied Physics Letters, vol. 28, no. 11, pp. 671–673, 1976. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Yue, B. Yan, G. Ganguly, J. Yang, S. Guha, and C. Teplin, “Material structure and metastability of hydrogenated nanocrystalline silicon solar cells,” Applied Physics Letters, vol. 88, no. 26, pp. 263507–263507, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Guha and J. Yang, “Science and technology of amorphous silicon alloy photovoltaics,” IEEE Transactions on Electron Devices, vol. 46, no. 10, pp. 2080–2085, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Yang, A. Banerjee, and S. Guha, “Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies,” Applied Physics Letters, vol. 70, no. 22, pp. 2975–2977, 1997. View at Scopus
  5. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991.
  6. S. M. Zakeeruddin, M. K. Nazeeruddin, and R. H. Baker, “Design, synthesis and application of amphilic ruthenium polypyridyl photosensitizers in solar cells based on nanocrystalline TiO2 films,” Langmuir, vol. 18, pp. 952–954, 2002.
  7. M. S. Dresselhaus and I. L. Thomas, “Alternative energy technologies,” Nature, vol. 414, no. 6861, pp. 332–337, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. M. Grätzel, “Photoelectrochemical cells,” Nature, vol. 414, no. 6861, pp. 338–344, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. J. Bisquert, D. Cahen, G. Hodes, S. Rühle, and A. Zaban, “Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells,” Journal of Physical Chemistry B, vol. 108, no. 24, pp. 8106–8118, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. C. J. Barbé, F. Arendse, P. Comte et al., “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” Journal of the American Ceramic Society, vol. 80, no. 12, pp. 3157–3171, 1997.
  11. B. Oregan, D. T. Schwartz, S. M. Zakeeruddin, and M. Gratzel, “Microfabrication of ceramics by filling of photoresist molds,” Advanced Materials, vol. 12, pp. 1263–1267, 2000.
  12. K. Vinodgopal, D. E. Wynkoop, and P. V. Kamat, “Environment photochemistry on semiconductor surfaces: photosensitized degradation of a textile azo dye, acid organge 7, on TiO2 particles using visible light,” Environmental Science Technology, vol. 30, pp. 1660–1666, 1996.
  13. K. Naoi, Y. Ohko, and T. Tatsuma, “TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior,” Journal of the American Chemical Society, vol. 126, no. 11, pp. 3664–3668, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. M. Tiemann, “Porous metal oxides as gas sensors,” Chemistry—A European Journal, vol. 13, no. 30, pp. 8376–8388, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. B. Tian, X. Liu, H. Yang et al., “General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica,” Advanced Materials, vol. 15, no. 16, pp. 1370–1373, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Yang, Q. Shi, B. Tian et al., “One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks,” Journal of the American Chemical Society, vol. 125, no. 16, pp. 4724–4725, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. P. Srinivasu, S. P. Singh, A. Islam, and L. Han, “Metal-Free counter electrode for efficient dye-sensitized solar cells through high surface area and large porous carbon,” International Journal of Photoenergy, vol. 2011, Article ID 617439, 4 pages, 2011. View at Publisher · View at Google Scholar
  18. K. P. Gierszal, T.-W. Kim, R. Ryoo, and M. Jaroniec, “Adsorption and structural properties of ordered mesoporous carbons synthesized by using various carbon precursors and ordered siliceous P6mm and Ia3d mesostructures as templates,” Journal of Physical Chemistry B, vol. 109, no. 49, pp. 23263–23268, 2005. View at Publisher · View at Google Scholar · View at PubMed