About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2011 (2011), Article ID 751498, 9 pages
http://dx.doi.org/10.1155/2011/751498
Research Article

Dispersion Engineered Silicon Nanocrystal Slot Waveguides for Soliton Ultrafast Optical Processing

1Photonics Research Group, Dipartimento di Ingegneria dell'Ambiente e per lo Sviluppo Sostenibile, Politecnico di Bari, viale del Turismo n. 8, 74100 Taranto, Italy
2Photonics Research Group, Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari, via Edoardo Orabona n. 4, 70125 Bari, Italy

Received 28 April 2011; Accepted 16 June 2011

Academic Editor: Anthony Kenyon

Copyright © 2011 Francesco De Leonardis and Vittorio M. N. Passaro. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Soref, “The past, present, and future of silicon photonics,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1678–1687, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. G. T. Reed, “The optical age of silicon,” Nature, vol. 427, no. 6975, pp. 595–596, 2004. View at Scopus
  3. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction, John Wiley, West Sussex, UK, 2004.
  4. L. Liao, A. Liu, D. Rubin et al., “40 Gbit/s silicon optical modulator for high-speed applications,” Electronics Letters, vol. 43, no. 22, pp. 1196–1197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 μm,” Optics Express, vol. 10, no. 22, pp. 1305–1313, 2002. View at Scopus
  6. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Optics Express, vol. 11, no. 15, pp. 1731–1739, 2003. View at Scopus
  7. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Optics Express, vol. 12, no. 18, pp. 4261–4268, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. Q. Xu, V. R. Almeida, and M. Lipson, “Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides,” Optics Express, vol. 12, no. 19, pp. 4437–4442, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. Q. Xu, V. R. Almeida, and M. Lipson, “Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide,” Optics Letters, vol. 30, no. 1, pp. 35–37, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. R. L. Espinola, J. I. Dadap, R. M. Osgood Jr., S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Optics Express, vol. 12, no. 16, pp. 3713–3718, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. V. M. N. Passaro and F. De Leonardis, “Space—Time modeling of Raman pulses in silicon-on-insulator optical waveguides,” Journal of Lightwave Technology, vol. 24, no. 7, pp. 2920–2931, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. F. De Leonardis and V. M. N. Passaro, “Ultrafast Raman pulses in SOI optical waveguides for nonlinear signal processing,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 14, no. 3, Article ID 4538023, pp. 739–751, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Optics Express, vol. 12, no. 21, pp. 5269–5273, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Krause, H. Renner, and E. Brinkmeyer, “Analysis of Raman lasing characteristics in silicon-on-insulator waveguides,” Optics Express, vol. 12, no. 23, pp. 5703–5710, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Rong, R. Jones, A. Liu et al., “A continuous-wave Raman silicon laser,” Nature, vol. 433, no. 7027, pp. 725–728, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. H. Rong, A. Liu, R. Jones et al., “An all-silicon Raman laser,” Nature, vol. 433, no. 7023, pp. 292–294, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. O. Boyraz and B. Jalali, “Demonstration of directly modulated silicon Raman laser,” Optics Express, vol. 13, no. 3, pp. 796–800, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. F. De Leonardis and V. M. N. Passaro, “Modelling of Raman amplification in silicon-on-insulator optical microcavities,” New Journal of Physics, vol. 9, article A25, pp. 1–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Rong, S. Xu, O. Cohen et al., “A cascaded silicon Raman laser,” Nature Photonics, vol. 2, no. 3, pp. 170–174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. V. M. N. Passaro and F. de Leonardis, “Investigation of SOI raman lasers for mid-infrared gas sensing,” Sensors, vol. 9, no. 10, pp. 7814–7836, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Rong, Y. H. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Optics Express, vol. 14, no. 3, pp. 1182–1188, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Optics Express, vol. 14, no. 24, pp. 11721–11726, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. V. G. Ta'eed, M. D. Pelusi, B. J. Eggleton et al., “Broadband wavelength conversion at 40 Gb/s using long serpentine As(2)S3 planar waveguides,” Optics Express, vol. 15, no. 23, pp. 15047–15052, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. B. G. Lee, A. Biberman, A. C. Turner-Foster et al., “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photonics Technology Letters, vol. 21, no. 3, pp. 182–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, London, UK, 3rd edition, 2001.
  26. J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Optical solitons in a silicon waveguide,” Optics Express, vol. 15, no. 12, pp. 7682–7688, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Blasco, J. V. Galán, P. Sanchis et al., “FWM in silicon nanocrystal-based sandwiched slot waveguides,” Optics Communications, vol. 283, no. 3, pp. 435–437, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Martínez, J. Blasco, P. Sanchis et al., “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters, vol. 10, no. 6, pp. 1506–1511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Creazzo, B. Redding, E. Marchena, S. Shi, and D. W. Prather, “Free-carrier absorption modulation in silicon nanocrystal slot waveguides,” Optics Letters, vol. 35, no. 21, pp. 3691–3693, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Zhang, Y. Yue, Y. Xiao-Li, J. Wang, R. G. Beausoleil, and A. E. Willner, “Flat and low dispersion in highly nonlinear slot waveguides,” Optics Express, vol. 18, no. 12, pp. 13187–13193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Optics Express, vol. 18, no. 19, pp. 20529–20534, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. Comsol Multiphysics by COMSOL, Stockholm, single license, 2005.
  33. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” Journal of Optics A, vol. 8, no. 10, pp. 840–848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE Journal of Quantum Electronics, vol. QE-23, no. 1, pp. 123–129, 1987. View at Scopus
  35. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Optics Express, vol. 12, no. 12, pp. 2774–2780, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Deb and A. Sharma, “Nonlinear pulse propagation through optical fibers: an efficient numerical method,” Optical Engineering, vol. 32, pp. 695–699, 1993.
  37. T. Tanabe, K. Nishiguchi, A. Shinya et al., “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Applied Physics Letters, vol. 90, no. 3, Article ID 031115, 2007. View at Publisher · View at Google Scholar
  38. M. Waldow, T. Plötzing, M. Gottheil et al., “25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator,” Optics Express, vol. 16, no. 11, pp. 7693–7702, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Applied Physics Letters, vol. 92, no. 15, Article ID 151104, 2008. View at Publisher · View at Google Scholar