About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2011 (2011), Article ID 867271, 6 pages
http://dx.doi.org/10.1155/2011/867271
Research Article

A TM-Pass/TE-Stop Polarizer Based on a Surface Plasmon Resonance

Faculty of Engineering, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan

Received 15 June 2010; Accepted 16 July 2010

Academic Editor: Ana Vukovic

Copyright © 2011 Yuu Wakabayashi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Magnusson and D. Shin, “Diffractive optical components,” in Encyclopedia of Physical Science and Technology, vol. 4, pp. 421–440, Academic Press, New York, NY, USA, 3rd edition, 2002.
  2. V. M. Fitio and Y. V. Bobitski, “High transmission of system “dielectric grating thin metal film—dielectric grating”,” in Proceedings of the 7th International Conference on Laser and Fiber-Optical Networks Modeling (LFNM '05), pp. 163–166, September 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Yamauchi, K. Sumida, and H. Nakano, “A TMpass/ TE-stop polarizer consisting of a metal film sandwiched with dielectric gratings,” in Proceedings of the 10th International Symposium on Contemporary Photonics Technology, vol. G-15, pp. 93–94, Tokyo, Japan, 2007.
  4. J. Yamauchi, T. Yamazaki, K. Sumida, and H. Nakano, “TM/TE wave splitters using surface plasmon polaritons,” in Integrated Photonics and Nanophotonics Research and Applications, Salt Lake City, Utah, USA, July 2007.
  5. J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots: optical properties,” Physical Review B, vol. 68, no. 20, Article ID 205103, 7 pages, 2003. View at Scopus
  6. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Applied Physics Letters, vol. 85, no. 24, pp. 5833–5835, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Au/SiO2 nanoring plasmon waveguides at optical communication band,” Journal of Lightwave Technology, vol. 25, no. 9, pp. 2757–2765, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J.-W. Mu and W.-P. Huang, “A low-loss surface plasmonic Bragg grating,” Journal of Lightwave Technology, vol. 27, no. 4, pp. 436–439, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Physical Review B, vol. 6, no. 12, pp. 4370–4379, 1972. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Norwood, Mass, USA, 2000.
  11. D. F. Kelley and R. I. Luebbers, “Piecewise linear recursive convolution for dispersive media using FDTD,” IEEE Transactions on Antennas and Propagation, vol. 44, no. 6, pp. 792–797, 1996. View at Scopus
  12. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Physical Review B, vol. 61, no. 15, pp. 10484–10503, 2000. View at Scopus
  13. E. Popov, S. Enoch, G. Tayeb, M. Nevière, B. Gralak, and N. Bonod, “Enhanced transmission due to nonplasmon resonances in one- and two-dimensional gratings,” Applied Optics, vol. 43, no. 5, pp. 999–1008, 2004. View at Scopus