About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2011 (2011), Article ID 909174, 12 pages
http://dx.doi.org/10.1155/2011/909174
Review Article

Light-Driven Droplet Manipulation Technologies for Lab-on-a-Chip Applications

Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095-1597, USA

Received 15 June 2011; Accepted 20 August 2011

Academic Editor: Aaron T. Ohta

Copyright © 2011 Sung-Yong Park and Pei-Yu Chiou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Wang, K. Liu, K. J. Chen, et al., “A rapid pathway toward a superb gene delivery system: programming structural and functional diversity into a supramolecular nanoparticle library,” ACS Nano, vol. 4, no. 10, pp. 6235–6243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. C. C. Lee, G. Sui, A. Elizarov et al., “Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics,” Science, vol. 310, no. 5755, pp. 1793–1796, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. L. S. Roach, H. Song, and R. F. Ismagilov, “Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants,” Analytical Chemistry, vol. 77, no. 3, pp. 785–796, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Song, D. L. Chen, and R. F. Ismagilov, “Reactions in droplets in microfluidic channels,” Angewandte Chemie—International Edition, vol. 45, no. 44, pp. 7336–7356, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. B. T. C. Lau, C. A. Baitz, X. P. Dong, and C. L. Hansen, “A complete microfluidic screening platform for rational protein crystallization,” Journal of the American Chemical Society, vol. 129, no. 3, pp. 454–455, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. D. L. Chen, G. J. Gerdts, and R. F. Ismagilov, “Using microfluidics to observe the effect of mixing on nucleation of protein crystals,” Journal of the American Chemical Society, vol. 127, no. 27, pp. 9672–9673, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Li, H. H. Pham, Z. Nie, B. MacDonald, A. Güenther, and E. Kumacheva, “Multi-step microfluidic polymerization reactions conducted in droplets: the internal trigger approach,” Journal of the American Chemical Society, vol. 130, no. 30, pp. 9935–9941, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Hua, J. L. Rouse, A. E. Eckhardt et al., “Multiplexed real-time polymerase chain reaction on a digital microfluidic platform,” Analytical Chemistry, vol. 82, no. 6, pp. 2310–2316, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Huebner, M. Srisa-Art, D. Holt et al., “Quantitative detection of protein expression in single cells using droplet microfluidics,” Chemical Communications, vol. 2, no. 12, pp. 1218–1220, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. L. H. Hung, K. M. Choi, W. Y. Tseng, Y. C. Tan, K. J. Shea, and A. P. Lee, “Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis,” Lab on a Chip, vol. 6, no. 2, pp. 174–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Hatakeyama, D. L. Chen, and R. F. Ismagilov, “Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS,” Journal of the American Chemical Society, vol. 128, no. 8, pp. 2518–2519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Gong and C. J. Kim, “All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics,” Lab on a Chip, vol. 8, no. 6, pp. 898–906, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. R. Wheeler, “Chemistry: putting electrowetting to work,” Science, vol. 322, no. 5901, pp. 539–540, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Ahn, C. Kerbage, T. P. Hunt, R. M. Westervelt, D. R. Link, and D. A. Weitz, “Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices,” Applied Physics Letters, vol. 88, no. 2, Article ID 024104, pp. 1–3, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. R. Millman, K. H. Bhatt, B. G. Prevo, and O. D. Velev, “Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors,” Nature Materials, vol. 4, no. 1, pp. 98–102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Z. Chen, S. M. Troian, A. A. Darhuber, and S. Wagner, “Effect of contact angle hysteresis on thermocapillary droplet actuation,” Journal of Applied Physics, vol. 97, no. 1, Article ID 014906, pp. 014906–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. E. F. Greco and R. O. Grigoriev, “Thermocapillary migration of interfacial droplets,” Physics of Fluids, vol. 21, no. 4, Article ID 042105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Franke, A. R. Abate, D. A. Weitz, and A. Wixforth, “Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices,” Lab on a Chip, vol. 9, no. 18, pp. 2625–2627, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Okochi, H. Tsuchiya, F. Kumazawa, M. Shikida, and H. Honda, “Droplet-based gene expression analysis using a device with magnetic force-based-droplet-handling system,” Journal of Bioscience and Bioengineering, vol. 109, no. 2, pp. 193–197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Zhang, S. Park, K. Liu, J. Tsuan, S. Yang, and T. H. Wang, “A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification,” Lab on a Chip, vol. 11, no. 3, pp. 398–406, 2011. View at Publisher · View at Google Scholar
  21. D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewar, and S. Anand, “Optical manipulation of airborne particles: techniques and applications,” Faraday Discussions, vol. 137, pp. 335–350, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. K. Valley, S. Ningpei, A. Jamshidi, H. Y. Hsu, and M. C. Wu, “A unified platform for optoelectrowetting and optoelectronic tweezers,” Lab on a Chip, vol. 11, no. 7, pp. 1292–1297, 2011. View at Publisher · View at Google Scholar
  23. S. Y. Park, S. Kalim, C. Callahan, M. A. Teitell, and E. P. Y. Chiou, “A light-induced dielectrophoretic droplet manipulation platform,” Lab on a Chip, vol. 9, no. 22, pp. 3228–3235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Optics Letters, vol. 11, no. 5, pp. 288–290, 1986. View at Scopus
  25. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Optics Communications, vol. 207, no. 1-6, pp. 169–175, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal particle and a water droplet by a scanning laser beam,” Applied Physics Letters, vol. 60, no. 7, pp. 807–809, 1992. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science, vol. 235, no. 4795, pp. 1517–1520, 1987. View at Scopus
  28. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature, vol. 330, no. 6150, pp. 769–771, 1987. View at Scopus
  29. D. G. Grier, “A revolution in optical manipulation,” Nature, vol. 424, no. 6950, pp. 810–816, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. U. Bockelmann, P. Thomen, B. Essevaz-Roulet, V. Viasnoff, and F. Heslot, “Unzipping DNA with optical tweezers: high sequence sensitivity and force flips,” Biophysical Journal, vol. 82, no. 3, pp. 1537–1553, 2002. View at Scopus
  31. J. E. Molloy and M. J. Padgett, “Lights, action: optical tweezers,” Contemporary Physics, vol. 43, no. 4, pp. 241–258, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Physical Review Letters, vol. 24, no. 4, pp. 156–159, 1970. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Applied Physics Letters, vol. 19, no. 8, pp. 283–285, 1971. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Ashkin and J. M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science, vol. 187, no. 4181, pp. 1073–1075, 1975. View at Scopus
  35. P. T. Nagy and G. P. Neitzel, “Optical levitation and transport of microdroplets: proof of concept,” Physics of Fluids, vol. 20, no. 10, Article ID 101703, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. M. I. Kohira, A. Isomura, N. Magome, S. Mukai, and K. Yoshikawa, “Optical levitation of a droplet under a linear increase in gravitational acceleration,” Chemical Physics Letters, vol. 414, no. 4–6, pp. 389–392, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Jordanov and R. Zellner, “Investigations of the hygroscopic properties of ammonium sulfate and mixed ammonium sulfate and glutaric acid micro droplets by means of optical levitation and Raman spectroscopy,” Physical Chemistry Chemical Physics, vol. 8, no. 23, pp. 2759–2764, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Physical Chemistry Chemical Physics, vol. 6, no. 21, pp. 4924–4927, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Mitchem, R. J. Hopkins, J. Buajarern, A. D. Ward, and J. P. Reid, “Comparative measurements of aerosol droplet growth,” Chemical Physics Letters, vol. 432, no. 1–3, pp. 362–366, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Magome, M. I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, “Optical trapping of a growing water droplet in air,” Journal of Physical Chemistry B, vol. 107, pp. 3988–3990, 2003.
  41. K. J. Knox, J. P. Reid, K. L. Hanford, A. J. Hudson, and L. Mitchem, “Direct measurements of the axial displacement and evolving size of optically trapped aerosol droplets,” Journal of Optics A, vol. 9, no. 8, article S10, pp. S180–S188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Physical Chemistry Chemical Physics, vol. 6, no. 3, pp. 474–487, 2004. View at Scopus
  43. R. D. Leonardo, G. Ruocco, J. Leach et al., “Parametric resonance of optically trapped aerosols,” Physical Review Letters, vol. 99, no. 1, Article ID 010601, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Mitchem, J. Buajarern, R. J. Hopkins et al., “Spectroscopy of growing and evaporating water droplets: exploring the variation in equilibrium droplet size with relative humidity,” Journal of Physical Chemistry A, vol. 110, no. 26, pp. 8116–8125, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Mitchem, J. Buajarern, A. D. Ward, and J. P. Reid, “A strategy for characterizing the mixing state of immiscible aerosol components and the formation of multiphase aerosol particles through coagulation,” Journal of Physical Chemistry B, vol. 110, no. 28, pp. 13700–13703, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. D. R. Burnham and D. McGloin, “Holographic optical trapping of aerosol droplets,” Optics Express, vol. 14, no. 9, pp. 4176–4181, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. K. T. Gahagan and G. A. Swartzlander, “Trapping of low-index microparticles in an optical vortex,” Journal of the Optical Society of America B, vol. 15, no. 2, pp. 524–534, 1998. View at Scopus
  48. K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Optics Letters, vol. 21, no. 11, pp. 827–829, 1996. View at Scopus
  49. R. M. Lorenz, J. S. Edgar, G. D. M. Jeffries, Y. Zhao, D. McGloin, and D. T. Chiu, “Vortex-trap-induced fusion of femtoliter-volume aqueous droplets,” Analytical Chemistry, vol. 79, no. 1, pp. 224–228, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. G. D. M. Jeffries, J. S. Kuo, and D. T. Chiu, “Dynamic modulation of chemical concentration in an aqueous droplet,” Angewandte Chemie—International Edition, vol. 46, no. 8, pp. 1326–1328, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. D. T. Chiu and R. M. Lorenz, “Chemistry and biology in femtoliter and picoliter volume droplets,” Accounts of Chemical Research, vol. 42, no. 5, pp. 649–658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. M. L. Cordero, D. R. Burnham, C. N. Baroud, and D. McGloin, “Thermocapillary manipulation of droplets using holographic beam shaping: microfluidic pin ball,” Applied Physics Letters, vol. 93, no. 3, Article ID 034107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. M. R. D. S. Vincent, Ŕ. Wunenburger, and J. P. Delville, “Laser switching and sorting for high speed digital microfluidics,” Applied Physics Letters, vol. 92, no. 15, Article ID 154105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. K. T. Kotz, K. A. Noble, and G. W. Faris, “Optical microfluidics,” Applied Physics Letters, vol. 85, no. 13, pp. 2658–2660, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. W. Hu and A. T. Ohta, “Aqueous droplet manipulation by optically induced Marangoni circulation,” Microfluidics and Nanofluidics, vol. 11, no. 3, pp. 307–316, 2011. View at Publisher · View at Google Scholar
  56. S. Y. Park, T. H. Wu, Y. Chen, M. A. Teitell, and P. Y. Chiou, “High-speed droplet generation on demand driven by pulse laser-induced cavitation,” Lab on a Chip, vol. 11, no. 6, pp. 1010–1012, 2011. View at Publisher · View at Google Scholar
  57. Z. G. Li, K. Ando, J. Q. Yu, A. Q. Liu, J. B. Zhang, and C. D. Ohl, “Fast on-demand droplet fusion using transient cavitation bubbles,” Lab on a Chip, vol. 11, no. 11, pp. 1879–1885, 2011. View at Publisher · View at Google Scholar
  58. P. Y. Chiou, Z. Chang, and M. C. Wu, “Droplet manipulation with light on optoelectrowetting device,” Journal of Microelectromechanical Systems, vol. 17, no. 1, pp. 133–138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sensors and Actuators A, vol. 104, no. 3, pp. 222–228, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. H. S. Chuang, A. Kumar, and S. T. Wereley, “Open optoelectrowetting droplet actuation,” Applied Physics Letters, vol. 93, no. 6, Article ID 064104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Y. Chiou, S. Y. Park, and M. C. Wu, “Continuous optoelectrowetting for picoliter droplet manipulation,” Applied Physics Letters, vol. 93, no. 22, Article ID 221110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Y. Park, M. A. Teitell, and E. P. Y. Chiou, “Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns,” Lab on a Chip, vol. 10, no. 13, pp. 1655–1661, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. D. H. Lee, H. Hwang, and J. K. Park, “Generation and manipulation of droplets in an optoelectrofluidic device integrated with microfluidic channels,” Applied Physics Letters, vol. 95, no. 16, Article ID 164102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Park, C. Pan, T. H. Wu et al., “Floating electrode optoelectronic tweezers: light-driven dielectrophoretic droplet manipulation in electrically insulating oil medium,” Applied Physics Letters, vol. 92, no. 15, Article ID 151101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications, Marcel Dekker, New York, NY, USA, 1989.
  66. N. O. Young, J. S. Goldstein, and M. J. Block, “The motion of bubbles in a vertical temperature gradient,” Journal of Fluid Mechanics, vol. 6, pp. 350–356, 1959.
  67. K. D. Barton and R. S. Subramanian, “The migration of liquid drops in a vertical temperature gradient,” Journal of Colloid and Interface Science, vol. 133, no. 1, pp. 211–222, 1989. View at Scopus
  68. B. Selva, V. Miralles, I. Cantat, and M. C. Jullien, “Thermocapillary actuation by optimized resistor pattern: bubbles and droplets displacing, switching and trapping,” Lab on a Chip, vol. 10, no. 14, pp. 1835–1840, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. A. A. Darhuber, J. P. Valentino, J. M. Davis, S. M. Troian, and S. Wagner, “Microfluidic actuation by modulation of surface stresses,” Applied Physics Letters, vol. 82, no. 4, pp. 657–659, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. C. N. Baroud, J. P. Delville, F. Gallaire, and R. Wunenburger, “Thermocapillary valve for droplet production and sorting,” Physical Review E, vol. 75, no. 4, Article ID 046302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. A. T. Ohta, A. Jamshidi, J. K. Valley, H. Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Applied Physics Letters, vol. 91, no. 7, Article ID 074103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. R. Shen, The Principles of Nonlinear Optics, Wiley, New York, NY, USA, 1984.
  73. E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel, “Dynamics of laser-induced cavitation bubbles near an elastic boundary,” Journal of Fluid Mechanics, vol. 433, pp. 251–281, 2001. View at Scopus
  74. R. K. Chang, J. H. Eickmans, W.-F. Hsieh, C. F. Wood, J.-Z. Zhang, and J.-b. Zheng, “Laser-induced breakdown in large transparent water droplets,” Applied Optics, vol. 27, no. 12, pp. 2377–2385, 1988. View at Publisher · View at Google Scholar
  75. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” Journal of the Acoustical Society of America, vol. 100, no. 1, pp. 148–165, 1996. View at Publisher · View at Google Scholar · View at Scopus
  76. E. Zwaan, S. Le Gac, K. Tsuji, and C. D. Ohl, “Controlled cavitation in microfluidic systems,” Physical Review Letters, vol. 98, no. 25, Article ID 254501, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, “Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects,” Biophysical Journal, vol. 91, no. 1, pp. 317–329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. A. N. Hellman, K. R. Rau, H. H. Yoon et al., “Laser-induced mixing in microfluidic channels,” Analytical Chemistry, vol. 79, no. 12, pp. 4484–4492, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Dijkink and C. D. Ohl, “Laser-induced cavitation based micropump,” Lab on a Chip, vol. 8, no. 10, pp. 1676–1681, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. T. H. Wu, L. Gao, Y. Chen, K. Wei, and P. Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Applied Physics Letters, vol. 93, no. 14, Article ID 144102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. P.-Y. Chiou, T.-H. Wu, S. Park, and Y. Chen, “Pulse laser driven ultrafast micro and nanofluidic system,” in Proceedings of the SPIE, vol. 7759, p. 77590Z, San Diego, Calif, USA, 2010. View at Publisher · View at Google Scholar
  82. P. R. C. Gascoyne, J. V. Vykoukal, J. A. Schwartz et al., “Dielectrophoresis-based programmable fluidic processors,” Lab on a Chip, vol. 4, no. 4, pp. 299–309, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. H. J. J. Verheijen and M. W. J. Prins, “Reversible electrowetting and trapping of charge: model and experiments,” Langmuir, vol. 15, no. 20, pp. 6616–6620, 1999. View at Publisher · View at Google Scholar · View at Scopus
  84. H. Moon, S. K. Cho, R. L. Garrell, and C. J. Kim, “Low voltage electrowetting-on-dielectric,” Journal of Applied Physics, vol. 92, no. 7, pp. 4080–4087, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. A. R. Wheeler, H. Moon, C. A. Bird et al., “Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS,” Analytical Chemistry, vol. 77, no. 2, pp. 534–540, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. S. K. Cho, H. Moon, and C. J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,” Journal of Microelectromechanical Systems, vol. 12, no. 1, pp. 70–80, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Abdelgawad, S. L. S. Freire, H. Yang, and A. R. Wheeler, “All-terrain droplet actuation,” Lab on a Chip, vol. 8, no. 5, pp. 672–677, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Vallet, B. Berge, and L. Vovelle, “Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films,” Polymer, vol. 37, no. 12, pp. 2465–2470, 1996. View at Publisher · View at Google Scholar · View at Scopus
  89. S. N. Pei, J. K. Valley, S. L. Neale, A. Jamshidi, H. Y. Hsu, and M. C. Wu, “Light-actuated digital microfluidics for large-scale, parallel manipulation of arbitrarily sized droplets,” in Proceedings of the 23rd IEEE International Conference on Micro Electro Mechanical Systems (MEMS '10), pp. 252–255, January 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. T. B. Jones, Electromechanics of Particles, Cambridge University Press, 1995.
  91. H. Pohl, Dielectrophoresis, Cambridge University Press, Cambridge, UK, 1978.
  92. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, vol. 436, no. 7049, pp. 370–372, 2005. View at Publisher · View at Google Scholar · View at Scopus