About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2011 (2011), Article ID 963068, 10 pages
http://dx.doi.org/10.1155/2011/963068
Research Article

Substitution of Carbazole Modified Fluorenes as π-Extension in Ru(II) Complex-Influence on Performance of Dye-Sensitized Solar Cells

1Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 607, India
2Aisin Cosmos R&D Co. Ltd., Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 607, India
3Laboratory of Photonics and Interfaces, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland

Received 30 April 2011; Accepted 31 May 2011

Academic Editor: Surya Prakash Singh

Copyright © 2011 Malapaka Chandrasekharam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chemical Reviews, vol. 110, no. 11, pp. 6595–6663, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. A. Hagfeld and M. Grätzel, “Light-induced redox reactions in nanocrystalline systems,” Chemical Reviews, vol. 95, no. 1, pp. 49–68, 1995. View at Scopus
  3. K. Hara, M. Kurashige, S. Ito et al., “Novel polyene dyes for highly efficient dye-sensitized solar cells,” Chemical Communications, vol. 9, no. 2, pp. 252–253, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Ferrere and B. A. Gregg, “Large increases in photocurrents and solar conversion efficiencies by UV illumination of dye sensitized solar cells,” Journal of Physical Chemistry B, vol. 105, no. 32, pp. 7602–7605, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. S. G. Chen, S. Chappel, Y. Diamant, and A. Zaban, “Preparation of Nb2O5 coated TiO2 nanoporous electrodes and their application in dye-sensitized solar cells,” Chemistry of Materials, vol. 13, no. 12, pp. 4629–4634, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at Scopus
  7. M. Grätzel, “Photoelectrochemical cells,” Nature, vol. 414, no. 6861, pp. 338–344, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. M. K. Nazeeruddin, A. Kay, I. Rodicio, et al., “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” Journal of the American Chemical Society, vol. 115, no. 14, pp. 6382–6390, 1993.
  9. S. M. Zakeeruddin, M. K. Nazeeruddin, R. Humpry Baker, et al., “Design, synthesis, and application of amphiphilic ruthenium polypyridyl photosensitizers in solar cells based on nanocrystalline TiO2 films,” Langmuir, vol. 18, no. 3, pp. 952–954, 2002.
  10. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Grätzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte,” Nature Materials, vol. 2, no. 6, pp. 402–407, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. P. Wang, S. M. Zakeeruddin, J. E. Moser et al., “Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells,” Advanced Materials, vol. 16, no. 20, pp. 1806–1811, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, and M. Grätzel, “A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 127, no. 3, pp. 808–809, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. D. Kuang, C. Klein, S. Ito, et al., “High molar extinction coefficient ion-coordinating ruthenium sensitizer for efficient and stable mesoscopic Dye-sensitized solarCells,” Advanced Functional Materials, vol. 17, pp. 154–160, 2007.
  14. K. J. Jiang, N. Masaki, J. B. Xia, S. Noda, and S. Yanagida, “A novel ruthenium sensitizer with a hydrophobic 2-thiophen-2-yl-vinyl- conjugated bipyridyl ligand for effective dye sensitized TiO2 solar cells,” Chemical Communications, no. 23, pp. 2460–2462, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. C.-Y. Chen, S.-J. Wu, C.-G. Wu, J.-G. Chen, and K.-C. Ho, “A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells,” Angewandte Chemie—International Edition, vol. 118, pp. 5954–5957, 2006.
  16. D. Kuang, C. Klein, S. Ito, et al., “High effiiciency and stable mesoscopic Dye-sensitized solar cells based on a high molar extinction cofficient Ru-sensitizer and non-volatile electrolyte,” Advanced Materials, vol. 19, pp. 1133–1137, 2007.
  17. D. Kuang, C. Klein, Z. Zhang et al., “Stable, high-efficiency ionic-liquid-based mesoscopic dye-sensitized solar cells,” Small, vol. 3, no. 12, pp. 2094–2102, 2007. View at Publisher · View at Google Scholar · View at PubMed
  18. F. Matar, T. H. Ghaddar, K. Walley, T. DosSantos, J. R. Durrant, and B. O'Regan, “A new ruthenium polypyridyl dye, TG6, whose performance in dye-sensitized solar cells is surprisingly close to that of N719, the ‘dye to beat’ for 17 years,” Journal of Materials Chemistry, vol. 18, no. 36, pp. 4246–4253, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Cao, Y. Bai, Q. Yu et al., “Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio)thiophene conjugated bipyridine,” Journal of Physical Chemistry C, vol. 113, no. 15, pp. 6290–6297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Gao, Y. Cheng, Q. Yu et al., “Conjugation of selenophene with bipyridine for a high molar extinction coefficient sensitizer in dye-sensitized solar cells,” Inorganic Chemistry, vol. 48, no. 6, pp. 2664–2669, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. F. Gao, Y. Wang, D. Shi et al., “Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 130, no. 32, pp. 10720–10728, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. M. Chandrasekharam, C. Srinivasarao, T. Suresh, et al., “High spectral response heteroleptic ruthenium (II) complexes as sensitizers for dye sensitized solar cells,” Journal of Chemical Sciences, vol. 123, pp. 37–46, 2011.
  23. P. Y. Reddy, L. Giribabu, C. Lyness et al., “Efficient sensitization of nanocrystalline TiO2 films by a near-IR-absorbing unsymmetrical zinc phthalocyanine,” Angewandte Chemie—International Edition, vol. 46, no. 3, pp. 373–376, 2007. View at Publisher · View at Google Scholar · View at PubMed
  24. L. Giribabu, M. Chandrasekheram, M. L. Kantham et al., “Conjugated organic dyes for dye-sensitized solar cells,” Indian Journal of Chemistry—Section A, vol. 45, no. 3, pp. 629–634, 2006. View at Scopus
  25. M. D. Iosip, S. Destri, M. Pasini, W. Porzio, K. P. Pernstich, and B. Batlogg, “New dithieno[3,2-b:2',3'-d]thiophene oligomers as promising materials for organic field-effect transistor applications,” Synthetic Metals, vol. 146, no. 3, pp. 251–257, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. E. J. Meijer, A. V. G. Mangnus, B. H. Huisman, G. W. 'T Hooft, D. M. de Leeuw, and T. M. Klapwijk, “Photoimpedance spectroscopy of poly(3-hexyl thiophene) metal-insulator- semiconductor diodes,” Synthetic Metals, vol. 142, no. 1–3, pp. 53–56, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. H. Li, M. S. Wong, Y. Tao, and J. Lu, “Diphenylamino end-capped oligofluorenes with enhanced functional properties for blue light emission: synthesis and structure-property relationships,” Chemistry—A European Journal, vol. 11, no. 11, pp. 3285–3293, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. L. Giribabu, C. Vijay Kumar, C. S. Rao et al., “High molar extinction coefficient amphiphilic ruthenium sensitizers for efficient and stable mesoscopic Dye-sensitized solar cells,” Energy and Environmental Science, vol. 2, no. 7, pp. 770–773, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Chandrasekharam, G. Rajkumar, C. Srinivasa Rao, T. Suresh, and P. Yella Reddy, “Phenothiazine conjugated bipyridine—a new class of ancillary ligand for Ru-sensitizer in Dye sensitized solar cell application,” Synthetic Metals. In press. View at Publisher · View at Google Scholar
  30. M. Chandrasekharam, G. Rajkumar, C. Srinivasa Rao et al., “Molecular engineered fluorene substituted Ru-complex for efficient mesoscopic dye sensitized solar cells,” vol. 2, 2011, Advances in Natural Sciences: Nanoscience and Nanotechnology. Accepted.
  31. M. Chandrasekharam, G. Rajkumar, C. Srinivasa Rao, et al., “Polypyridyl Ru(II)-sensitizers with extended π-system enhances the performance of Dye sensitized solar cells,” Synthetic Metals, vol. 161, pp. 1098–1104, 2011.
  32. M. Chandrasekharam, G. Rajkumar, C. Srinivasa Rao, P. Yella Reddy, and M. Lakshmi Kantam, “Change of Dye bath for sensitisation of nanocrystalline TiO2 films: enhances performance of Dye-sensitized solar cells,” Advances in OptoElectronics, vol. 2011, Article ID 376369, 9 pages.
  33. C.-Y. Chen, J.-G. Chen, S.-J. Wu, J.-Y. Li, C.-G. Wu, and K.-C. Ho, “Multifunctionalized ruthenium-based supersensitizers for highly efficient dye-sensitized solar cells,” Angewandte Chemie—International Edition, vol. 47, no. 38, pp. 7342–7345, 2008. View at Publisher · View at Google Scholar · View at PubMed