About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2011 (2011), Article ID 965967, 10 pages
http://dx.doi.org/10.1155/2011/965967
Research Article

Microcavity Silicon Photodetectors at 1.55 μm

1Department of Naples, Institute for Microelectronics and Microsystems, National Council of Research, Via P. Castellino 111, 80131 Naples, Italy
2Department of Mathematics, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italy

Received 25 June 2010; Revised 16 September 2010; Accepted 22 October 2010

Academic Editor: Snjezana Tomljenovic-Hanic

Copyright © 2011 M. Casalino et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. C. Kimerling, L. Dal Negro, S. Saini, et al., “Monolithic silicon microphotonics,” in Silicon Photonics, L. Pavesi and D. J. Lockwood, Eds., vol. 94 of Topics in Applied Physics, pp. 89–119, Springer, Berlin, Germany, 2004.
  2. B. Jalali and S. Fathpour, “Silicon photonics,” Journal of Lightwave Technology, vol. 24, no. 12, pp. 4600–4615, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electronics Letters, vol. 43, no. 7, pp. 392–393, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Vivien, D. Pascal, S. Lardenois et al., “Light injection in SOI microwaveguides using high-efficiency grating couplers,” Journal of Lightwave Technology, vol. 24, no. 10, pp. 3810–3815, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Optics Express, vol. 15, no. 2, pp. 430–436, 2007. View at Scopus
  6. C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystal, and O. Painter, “An optical fiber-taper probe for wafer-scale microphotonic device characterization,” Optics Express, vol. 15, no. 8, pp. 4745–4752, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Liu, L. Liao, D. Rubin et al., “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Optics Express, vol. 15, no. 2, pp. 660–668, 2007. View at Scopus
  8. A. Liu, H. Rong, R. Jones, O. Cohen, D. Hak, and M. Paniccia, “Optical amplification and lasing by stimulated Raman scattering in silicon waveguides,” Journal of Lightwave Technology, vol. 24, no. 3, pp. 1440–1455, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Applied Physics Letters, vol. 81, no. 7, p. 1323, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Applied Physics Letters, vol. 86, no. 24, Article ID 241103, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Applied Physics Letters, vol. 95, no. 17, Article ID 171111, 2009. View at Publisher · View at Google Scholar
  12. S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Applied Physics Letters, vol. 92, no. 8, Article ID 081103, 2008. View at Publisher · View at Google Scholar
  13. A. Akbari and P. Berini, “Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide,” Applied Physics Letters, vol. 95, no. 2, Article ID 021104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Wang, X. Su, Y. Zhu et al., “Photocurrent in Ag-Si photodiodes modulated by plasmonic nanopatterns,” Applied Physics Letters, vol. 95, no. 24, Article ID 241106, 2009. View at Publisher · View at Google Scholar
  15. W. F. Kosonocky, F. V. Shallcross, T. S. Villani, and J. V. Groppe, “160×244 element PtSi Schottky-barrier IR-CCD image sensor,” IEEE Transactions on Electron Devices, vol. 32, no. 8, pp. 1564–1573, 1986. View at Scopus
  16. R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Physical Review, vol. 38, no. 1, pp. 45–56, 1931. View at Publisher · View at Google Scholar · View at Scopus
  17. V. E. Vickers, “Model of Schottky barrier hot-electron-mode photodetection,” Applied Optics, vol. 10, no. 9, pp. 2190–2192, 1971.
  18. S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, NY, USA, 1981.
  19. H. X. Yuan and A. G. U. Perera, “Dark current analysis of Si homojunction interfacial work function internal photoemission far-infrared detectors,” Applied Physics Letters, vol. 66, no. 17, pp. 2262–2264, 1995. View at Scopus
  20. M. K. Emsley, O. Dosunmu, and M. S. Ünlü, “Silicon substrates with buried distributed Bragg reflectors for resonant cavity-enhanced optoelectronics,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, no. 4, pp. 948–955, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Y. Chan and H. C. Card, “Near IR interband transitions and optical parameters of metal-germanium contacts,” Applied Optics, vol. 19, no. 8, pp. 1309–1315, 1980. View at Scopus
  22. G. G. Shahidi, “SOI technology for the GHz era,” IBM Journal of Research and Development, vol. 46, no. 2-3, pp. 121–131, 2002. View at Scopus
  23. E. Y. Chan, H. C. Card, and M. C. Teich, “Internal photoemission mechanisms at interfaces between germanium and thin metal films,” IEEE Journal of Quantum Electronics, vol. 16, no. 3, pp. 373–381, 1980. View at Scopus
  24. P. Yeh, Optical Waves in Layerer Media, John Wiley & Sons, New York, NY, USA, 1988.
  25. M. A. Muriel and A. Carballar, “Internal field distributions in fiber Bragg gratings,” IEEE Photonics Technology Letters, vol. 9, no. 7, pp. 955–960, 1997. View at Scopus
  26. K. Kishino, M. S. Unlu, J. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE Journal of Quantum Electronics, vol. 27, no. 8, pp. 2025–2034, 1991. View at Publisher · View at Google Scholar · View at Scopus
  27. E. D. Palik, Handbook of Optical Constants of Solids, Academic Press, San Diego, Calif, USA, 1985.
  28. H. C. Card, “Aluminum-silicon Schottky barriers and ohmic contacts in integrated circuits,” IEEE Transactions on Electron Devices, vol. 23, no. 6, pp. 538–544, 1976. View at Scopus
  29. K. Vedam, “Spectroscopic ellipsometry: a historical overview,” Thin Solid Films, vol. 313-314, pp. 1–9, 1998. View at Scopus
  30. G. E. Jellison Jr., “The calculation of thin film parameters from spectroscopic ellipsometry data,” Thin Solid Films, vol. 290-291, pp. 40–45, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. G. E. Jellison Jr. and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Applied Physics Letters, vol. 69, no. 3, pp. 371–373, 1996. View at Scopus
  32. G. E. Jellison Jr., F. A. Modine, P. Doshi, and A. Rohatgi, “Spectroscopic ellipsometry characterization of thin-film silicon nitride,” Thin Solid Films, vol. 313-314, pp. 193–197, 1998. View at Scopus
  33. P. Doshi, G. E. Jellison Jr., and A. Rohatgi, “Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics,” Applied Optics, vol. 36, no. 30, pp. 7826–7837, 1997. View at Scopus
  34. D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Physical Review B, vol. 20, no. 8, pp. 3292–3302, 1979. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Donati, Photodetectors: Devices, Circuits, and Applications, Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.
  36. W. Demtroder, Laser Spectroscopy: Vol. 1: Basic principles, chapter 4, Springer, Berlin, Germany, 2008.