About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2012 (2012), Article ID 161402, 16 pages
http://dx.doi.org/10.1155/2012/161402
Research Article

Extension of the Multipole Approach to Random Metamaterials

Institut für Angewandte Physik, Friedrich-Schiller-Universität Jena, Max Wien Platz 1, 07743 Jena, Germany

Received 1 July 2012; Accepted 11 September 2012

Academic Editor: Natalia M. Litchinitser

Copyright © 2012 A. Chipouline et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. K. Chettiar, A. V. Kildishev, H. K. Yuan et al., “Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm,” Optics Letters, vol. 32, no. 12, pp. 1671–1673, 2007. View at Scopus
  2. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Optics Letters, vol. 32, no. 1, pp. 53–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Valentine, S. Zhang, T. Zentgraf et al., “Three-dimensional optical metamaterial with a negative refractive index,” Nature, vol. 455, no. 7211, pp. 376–379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Materials, vol. 8, no. 7, pp. 568–571, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Alu and N. Engheta, “Cloaking a sensor,” Physical Review Letters, vol. 102, 2009.
  6. Y. Lai, J. Ng, H. Chen et al., “Illusion optics: the optical transformation of an object into another object,” Physical Review Letters, vol. 102, 2009.
  7. M. Farhat, S. Guenneau, and S. Enoch, “Ultrabroadband elastic cloaking in thin plates,” Physical Review Letters, vol. 103, 2009.
  8. D. Schurig, J. J. Mock, B. J. Justice et al., “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977–980, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. U. Leonhardt, “Optical conformal mapping,” Science, vol. 312, no. 5781, pp. 1777–1780, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. E. E. Narimanov and A. V. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Applied Physics Letters, vol. 95, Article ID 041106, 2009.
  11. S. M. Vukovic, I. V. Shadrivov, and Y. S. Kivshar , “Surface Bloch waves in metamaterial and metal-dielectric superlattices,” Applied Physics Letters, vol. 95, Article ID 041902, 2009.
  12. D. Ö. Göuney and D. A. Meyer, “Negative refraction gives rise to the Klein paradox,” Physical Review A, vol. 79, p. 1, 2009.
  13. N. Papasimakis, V. Fedotov, and N. Zheludev, “Metamaterial analog of electromagnetically induced transparency,” Physical Review Letters, vol. 101, Article ID 253903, 2008.
  14. N. Liu, L. Langguth, T. Weiss et al., “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Materials, vol. 8, no. 9, pp. 758–762, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Mazur and B. R. A. Nijboer, “On the statistical mechanics of matter in an electromagnetic field—I. Derivation of the maxwell equations from electron theory,” Physica, vol. 19, no. 1–12, pp. 971–986, 1953. View at Scopus
  16. A. Chipouline, J. Petschulat, A. Tuennermann et al., “Multipole approach in electrodynamics of metamaterials,” Applied Physics A, vol. 103, no. 3, pp. 899–904, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Chipouline, S. Sugavanam, J. Petschulat, and T. Pertsch, “Metamaterials with interacting Metaatoms,” http://arxiv.org/abs/1205.6839.
  18. C. S. Deng, H. Xu, and L. Deych, “Optical transport and statistics of radiative losses in disordered chains of microspheres,” Physical Review A, vol. 82, no. 4, Article ID 041803, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Physical Review B, vol. 70, no. 12, Article ID 125429, 8 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Optics Letters, vol. 23, no. 17, pp. 1331–1333, 1998. View at Scopus
  21. N. A. Gippius, T. Weiss, S. G. Tikhodeev, and H. Giessen, “Resonant mode coupling of optical resonances in stacked nanostructures,” Optics Express, vol. 18, no. 7, pp. 7569–7574, 2010. View at Scopus
  22. N. Feth, M. König, M. Husnik et al., “Electromagnetic interaction of split-ring resonators: the role of separation and relative orientation,” Optics Express, vol. 18, no. 7, pp. 6545–6554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Physical Review B, vol. 74, no. 20, Article ID 205436, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. J. M. Rico-García, J. M. López-Alonso, and A. Aradian, “Toy model to describe the effect of positional blocklike disorder in metamaterials composites,” Journal of the Optical Society of America B, vol. 29, p. 53, 2012.
  25. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Physical Review B, vol. 67, no. 20, Article ID 205402, pp. 2054021–2054025, 2003. View at Scopus
  26. A. Alù and N. Engheta, “Effect of small random disorders and imperfections on the performance of arrays of plasmonic nanoparticles,” New Journal of Physics, vol. 12, Article ID 013015, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. B. Pendry, “Light finds a way through maze,” Physics, vol. 1, p. 20, 2008.
  28. P. W. Anderson, “Absence of diffusion in certain random lattices,” Physical Review, vol. 109, no. 5, pp. 1492–1505, 1958. View at Publisher · View at Google Scholar · View at Scopus
  29. J. B. Pendry, “Quasi-extended electron states in strongly disordered systems,” Journal of Physics C, vol. 20, no. 5, p. 733, 1987.
  30. A. V. Tartakovskii, M. V. Fistul, M. E. Raikh, and I. M. Ruzin, “Hopping conductivity of metal-semiconductormetal contacts,” Soviet Physics, vol. 21, p. 370, 1987.
  31. J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in anderson localized 1D systems,” Physical Review Letters, vol. 94, no. 11, Article ID 113903, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one-dimensional dissipative random systems,” Physical Review Letters, vol. 97, no. 24, Article ID 243904, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Rüting, “Plasmons in disordered nanoparticle chains: localization and transport,” Physical Review B, vol. 83, no. 11, Article ID 115447, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Mogilevtsev, F. A. Pinheiro, R. R. Dos Santos, S. B. Cavalcanti, and L. E. Oliveira, “Suppression of Anderson localization of light and Brewster anomalies in disordered superlattices containing a dispersive metamaterial,” Physical Review B, vol. 82, no. 8, Article ID 081105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. W. Tan, Y. Sun, Z. G. Wang, H. Chen, and H. Q. Lin, “Transparency induced by coupled resonances in disordered metamaterials,” Optics Express, vol. 17, no. 26, pp. 24371–24376, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” Journal of Applied Physics, vol. 99, no. 4, Article ID 043102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. M. V. Gorkunov, S. A. Gredeskul, I. V. Shadrivov, and Y. S. Kivshar, “Effect of microscopic disorder on magnetic properties of metamaterials,” Physical Review E, vol. 73, no. 5, Article ID 056605, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Zhou, X. P. Zhao, and Y. Liu, “Disorder effects of left-handed metamaterials with unitary dendritic structure cell,” Optics Express, vol. 16, no. 11, pp. 7674–7679, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Physical Review B, vol. 80, no. 4, Article ID 041102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials, vol. 2, no. 1, pp. 1–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. J. P. Wright, O. Worsfold, C. Whitehouse, and M. Himmelhaus, “Ultraflat ternary nanopatterns fabricated using colloidal lithography,” Advanced Materials, vol. 18, no. 4, pp. 421–426, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Hanarp, D. Sutherland, J. Gold, and B. Kasemo, “Nanostructured model biomaterial surfaces prepared by colloidal lithography,” Nanostructured Materials, vol. 12, no. 1, pp. 429–432, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Glass, M. Möller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology, vol. 14, no. 10, pp. 1153–1160, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Helgert, C. Rockstuhl, C. Etrich et al., “Effective properties of amorphous metamaterials,” Physical Review B, vol. 79, Article ID 233107, 2009.
  45. J. Petschulat, C. Menzel, A. Chipouline et al., “Multipole approach to metamaterials,” Physical Review A, vol. 78, no. 4, Article ID 043811, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. D. A. Pawlak, S. Turczynski, M. Gajc et al., “How far are we from making metamaterials by self-organization? the microstructure of highly anisotropic particles with an SRR-like geometry,” Advanced Functional Materials, vol. 20, no. 7, pp. 1116–1124, 2010. View at Publisher · View at Google Scholar · View at Scopus