About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2012 (2012), Article ID 313984, 11 pages
http://dx.doi.org/10.1155/2012/313984
Review Article

Dirac Dispersion in Two-Dimensional Photonic Crystals

Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Received 6 July 2012; Accepted 6 September 2012

Academic Editor: Pavel A. Belov

Copyright © 2012 C. T. Chan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. A. M. Dirac, “The quantum theory of the electron,” Proceedings of the Royal Society A, vol. 117, p. 610, 1928.
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Electric field in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry's phase in graphene,” Nature, vol. 438, no. 7065, pp. 201–204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. V. P. Gusynin and S. G. Sharapov, “Unconventional integer quantum hall effect in graphene,” Physical Review Letters, vol. 95, no. 14, Article ID 146801, 2005.
  6. K. S. Novoselov, Z. Jiang, Y. Zhang et al., “Room-temperature quantum hall effect in graphene,” Science, vol. 315, no. 5817, p. 1379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. I. Katsnelsona, “Zitterbewegung, chirality, and minimal conductivity in graphene,” The European Physical Journal B, vol. 51, no. 2, pp. 157–160, 2006. View at Publisher · View at Google Scholar
  8. J. Cserti and G. David, “Unified description of Zitterbewegung for spintronic, graphene, and superconducting systems,” Physical Review B, vol. 74, no. 17, Article ID 172305, 2006. View at Publisher · View at Google Scholar
  9. T. M. Rusin and W. Zawadzki, “Transient Zitterbewegung of charge carriers in mono and bilayer graphene, and carbon nanotubes,” Physical Review B, vol. 76, Article ID 195439, 2007.
  10. G. David and J. Cserti, “General theory of the Zitterbewegung,” Physical Review B, vol. 81, Article ID 121417, 2010.
  11. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Reviews of Modern Physics, vol. 81, no. 1, pp. 109–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, “Chiral tunnelling and the Klein paradox in graphene,” Nature Physics, vol. 2, no. 9, pp. 620–625, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson et al., “Strong suppression of weak localization in graphene,” Physical Review Letters, vol. 97, no. 1, Article ID 016801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A. K. Geim and A. H. MacDonald, “Graphene: exploring carbon flatland,” Physics Today, vol. 60, no. 8, pp. 35–41, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, no. 3, pp. 183–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Physical Review B, vol. 44, no. 16, pp. 8565–8571, 1991. View at Publisher · View at Google Scholar · View at Scopus
  17. R. A. Sepkhanov, Y. B. Bazaliy, and C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Physical Review A, vol. 75, no. 6, Article ID 063813, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Diema, T. Koschny, and C. M. Soukoulis, “Transmission in the vicinity of the Dirac point in hexagonal photonic crystals,” Physica B, vol. 405, no. 14, pp. 2990–2995, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. R. A. Sepkhanov, J. Nilsson, and C. W. J. Beenakker, “How to detect the pseudospin-1/2 Berry phase in a photonic crystal with a Dirac spectrum,” Physical Review B, vol. 78, Article ID 045122, 2008.
  20. X. Zhang, “Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal,” Physical Review Letters, vol. 100, no. 11, p. 113903, 2008. View at Publisher · View at Google Scholar
  21. S. Raghu and F. D. M. Haldane, “Analogs of quantum Hall effect edge states in photonic crystals,” Physical Review A, vol. 78, Article ID 033834, 2008.
  22. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Physical Review Letters, vol. 100, Article ID 013904, 2008.
  23. T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Physical Review B, vol. 80, no. 15, p. 155103, 2009. View at Publisher · View at Google Scholar
  24. T. Ochiai, “Topological properties of bulk and edge states in honeycomb lattice photonic crystals: the case of TE polarization,” Journal of Physics, vol. 22, no. 22, p. 225502, 2010. View at Publisher · View at Google Scholar
  25. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, vol. 58, no. 20, pp. 2059–2062, 1987. View at Publisher · View at Google Scholar
  26. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters, vol. 58, no. 23, pp. 2486–2489, 1987. View at Publisher · View at Google Scholar
  27. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Physical Review Letters, vol. 65, no. 25, pp. 3152–3155, 1990. View at Publisher · View at Google Scholar
  28. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photoniccrystal,” Physical Review Letters, vol. 100, no. 1, p. 013905, 2008. View at Publisher · View at Google Scholar
  29. Z. Yu, G. s Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Physical Review Letters, vol. 100, no. 2, p. 023902, 2008. View at Publisher · View at Google Scholar
  30. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature, vol. 461, no. 7265, pp. 772–775, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Ao, Z. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Physical Review B, vol. 80, no. 3, p. 033105, 2009. View at Publisher · View at Google Scholar
  32. Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Physical Review Letters, vol. 106, no. 9, p. 093903, 2011. View at Publisher · View at Google Scholar
  33. X. Zhang and Z. Liu, “Extremal transmission and beating effect of acoustic waves in two-dimensional sonic crystals,” Physical Review Letters, vol. 101, no. 26, p. 264303, 2008. View at Publisher · View at Google Scholar
  34. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics Uspekhi, vol. 10, no. 4, p. 509, 1968. View at Publisher · View at Google Scholar
  35. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, no. 5514, pp. 77–79, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Physical Review Letters, vol. 84, no. 18, pp. 4184–4187, 2000. View at Scopus
  37. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Physical Review Letters, vol. 95, no. 13, p. 137404, 2005. View at Publisher · View at Google Scholar
  38. V. M. Shalaev, W. Cai, U. K. Chettiar et al., “Negative index of refraction in optical metamaterials,” Optics Letters, vol. 30, no. 24, pp. 3356–3358, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Optics Letters, vol. 32, no. 1, pp. 53–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, vol. 85, no. 18, pp. 3966–3969, 2000. View at Publisher · View at Google Scholar
  41. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science, vol. 308, no. 5721, pp. 534–537, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science, vol. 312, no. 5781, pp. 1780–1782, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. U. Leonhardt, “Optical conformal mapping,” Science, vol. 312, no. 5781, pp. 1777–1780, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Schurig, J. J. Mock, B. J. Justice et al., “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977–980, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations,” Photonics and Nanostructures, vol. 6, no. 1, pp. 87–95, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Yang, H. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Optics Express, vol. 16, no. 22, pp. 18545–18550, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Applied Physics Letters, vol. 90, no. 24, p. 241105, 2007. View at Publisher · View at Google Scholar
  48. Y. Lai, J. Ng, H. Y. Chen et al., “Illusion optics: the optical transformation of an object into another object,” Physical Review Letters, vol. 102, no. 25, p. 253902, 2009. View at Publisher · View at Google Scholar
  49. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Physical Review Letters, vol. 97, no. 15, p. 157403, 2006. View at Publisher · View at Google Scholar
  50. M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in ε-near-zero media,” Physical Review B, vol. 75, no. 7, p. 075119, 2007. View at Publisher · View at Google Scholar
  51. M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Physical Review B, vol. 76, no. 24, p. 245109, 2007. View at Publisher · View at Google Scholar
  52. A. Alu and N. Engheta, “Dielectric sensing in ε-near-zero narrow waveguide channels,” Physical Review B, vol. 78, p. 045102, 2008.
  53. A. Alu, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε-near-zero–filled narrow channels,” Physical Review E, vol. 78, no. 1, p. 016604, 2008. View at Publisher · View at Google Scholar
  54. B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using ε-near-zero effects,” Journal of Applied Physics, vol. 105, no. 4, p. 044905, 2009. View at Publisher · View at Google Scholar
  55. R. Liu, Q. Cheng, T. Hand et al., “Experimental demonstration of electromagnetic tunneling through an ε-near-zero metamaterial at microwave frequencies,” Physical Review Letters, vol. 100, no. 2, p. 023903, 2008. View at Publisher · View at Google Scholar
  56. B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of ε-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Physical Review Letters, vol. 100, no. 3, p. 033903, 2008. View at Publisher · View at Google Scholar
  57. K. Halterman and S. Feng, “Resonant transmission of electromagnetic fields through subwavelength zero- ϵ slits,” Physical Review A, vol. 78, no. 2, p. 021805, 2008. View at Publisher · View at Google Scholar
  58. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Physical Review E, vol. 70, no. 4, p. 046608, 2004. View at Publisher · View at Google Scholar
  59. S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Physical Review Letters, vol. 89, no. 21, p. 213902, 2002. View at Publisher · View at Google Scholar
  60. A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “ε-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Physical Review B, vol. 75, no. 15, p. 155410, 2007. View at Publisher · View at Google Scholar
  61. J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Applied Physics Letters, vol. 96, no. 10, p. 101109, 2010. View at Publisher · View at Google Scholar
  62. Y. Jin and S. He, “Enhancing and suppressing radiation with some permeability-near-zero structures,” Optics Express, vol. 18, no. 16, pp. 16587–16593, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Physical Review Letters, vol. 105, no. 23, p. 233908, 2010. View at Publisher · View at Google Scholar
  64. Y. Xu and H. Chen, “Total reflection and transmission by ε-near-zero metamaterials with defects,” Applied Physics Letters, vol. 98, no. 11, p. 113501, 2011. View at Publisher · View at Google Scholar
  65. L. G. Wang, Z. G. Wang, J. X. Zhang, and S. Y. Zhu, “Realization of Dirac point with double cones in optics,” Optics Letters, vol. 34, no. 10, p. 1510, 2009. View at Publisher · View at Google Scholar
  66. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nature Materials, vol. 10, no. 8, pp. 582–586, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proceedings of the Royal Society of London A, vol. 392, no. 1802, pp. 45–57, 1984. View at Publisher · View at Google Scholar
  68. Y. Wu, J. Li, Z. Q. Zhang, and C. T. Chan, “Effective medium theory for magnetodielectric composites: beyond the long-wavelength limit,” Physical Review B, vol. 74, no. 8, p. 085111, 2006. View at Publisher · View at Google Scholar
  69. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nature Photonics, vol. 3, no. 8, pp. 461–463, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Sakoda, Optical Properties of Photonic Crystals, Springer-Verlag, Berlin, Germany, 2nd edition, 2004.
  71. Y. D. Chong, X. G. Wen, and M. Soljacic, “Effective theory of quadratic degeneracies,” Physical Review B, vol. 77, no. 23, p. 235125, 2008. View at Publisher · View at Google Scholar
  72. K. Sakoda and H. Zhou, “Role of structural electromagnetic resonances in a steerable left-handed antenna,” Optics Express, vol. 18, no. 26, pp. 27371–27386, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Sakoda and H. Zhou, “Analytical study of two-dimensional degenerate metamaterial antennas,” Optics Express, vol. 19, no. 15, pp. 13899–13921, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. K. Sakoda, “Dirac cone in two- and three-dimensional metamaterials,” Optics Express, vol. 20, no. 4, pp. 3898–3917, 2012. View at Publisher · View at Google Scholar
  75. K. Sakoda, “Double Dirac cones in triangular-lattice metamaterials,” Optics Express, vol. 20, no. 9, pp. 9925–9939, 2012. View at Publisher · View at Google Scholar
  76. T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and Its Applications in Physics, Springer, Berlin, Germany, 1990.
  77. J. Mei, Y. Wu, C. T. Chan, and Z. Q. Zhang, “Do linear dispersions of classical waves mean Dirac cones?” Physical Review B, vol. 86, p. 035141, 2012. View at Publisher · View at Google Scholar
  78. Z. Lan, N. Goldman, A. Bermudez, W. Lu, and P. Ohberg, “Dirac-Weyl fermions with arbitrary spin in two-dimensional optical superlattices,” Physical Review B, vol. 84, no. 16, p. 165115, 2011. View at Publisher · View at Google Scholar
  79. B. Dora, J. Kailasvuori, and R. Moessner, “Lattice generalization of the Dirac equation to general spin and the role of the flat band,” Physical Review B, vol. 84, no. 19, p. 195422, 2011. View at Publisher · View at Google Scholar
  80. E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: analysis of the peak line shape,” Physical Review Letters, vol. 56, no. 14, pp. 1471–1474, 1986. View at Publisher · View at Google Scholar
  81. J. T. Costa and M. G. Silveirinha, “Mimicking the Veselago-Pendry lens with broadband matched double-negative metamaterials,” Physical Review B, vol. 84, no. 15, p. 155131, 2011. View at Publisher · View at Google Scholar
  82. C. T. Chan, X. Huang, F. Liu, and Z. H. Hang, “Dirac dispersion and zero-index in two dimensional and three dimensional photonic and phononic systems,” Progress In Electromagnetics Research B, vol. 44, pp. 163–190, 2012. View at Publisher · View at Google Scholar