About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2012 (2012), Article ID 439147, 9 pages
http://dx.doi.org/10.1155/2012/439147
Research Article

Field Enhancement in a Grounded Dielectric Slab by Using a Single Superstrate Layer

1Department of Radio Science and Engineering, School of Electrical Engineering, Aalto University, Otakaari 5A Street, 02150 Espoo, Finland
2Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Received 19 June 2012; Revised 22 September 2012; Accepted 24 September 2012

Academic Editor: Natalia M. Litchinitser

Copyright © 2012 Constantinos A. Valagiannopoulos and Nikolaos L. Tsitsas. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. J. Zheng, H. Liu, S. M. Wang et al., “Selective optical trapping based on strong plasmonic coupling between gold nanorods and slab,” Applied Physics Letters, vol. 98, no. 8, Article ID 083117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. A. R. Neves, A. Fontes, L. Y. De Pozzo et al., “Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric,” Optics Express, vol. 14, no. 26, pp. 13101–13106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. T. M. Grzegorczyk and J. A. Kong, “Analytical prediction of stable optical trapping in optical vortices created by three TE or TM plane waves,” Optics Express, vol. 15, no. 13, pp. 8010–8020, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Verhagen, L. Kuipers, and A. Polman, “Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence,” Optics Express, vol. 17, no. 17, pp. 14586–14598, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Vassallo, “Theory and practical calculation of antireflection coatings on semiconductor laser diode optical amplifiers,” IEE Proceedings, vol. 137, no. 4, pp. 193–202, 1990. View at Scopus
  6. C. A. Valagiannopoulos, “High selectivity and controllability of a parallel-plate component with a filled rectangular ridge,” Progress In Electromagnetics Research, vol. 119, pp. 497–511, 2011. View at Publisher · View at Google Scholar
  7. J.-H. Choe, Q. H. Park, and H. Jeon, “Effect of metallic slab cladding on photonic crystal band structures,” Journal of the Korean Physical Society, vol. 53, no. 5, pp. 2591–2595, 2008. View at Scopus
  8. A. Alù, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New Journal of Physics, vol. 12, Article ID 103028, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. C. A. Valagiannopoulos and N. L. Tsitsas, “Integral equation analysis of a low-profile receiving planar microstrip antenna with a cloaking superstrate,” Radio Science, vol. 47, Article ID RS2022, 2012. View at Publisher · View at Google Scholar
  10. C. A. Valagiannopoulos, “Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders,” Progress in Electromagnetics Research, vol. 114, pp. 51–66, 2011. View at Scopus
  11. F. Yang, A. Aminian, and Y. Rahmat-Samii, “A novel surface-wave antenna design using a thin periodically loaded ground plane,” Microwave and Optical Technology Letters, vol. 47, no. 3, pp. 240–245, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. G. D. Landry and T. A. Maldonado, “Gaussian beam transmission and reflection from a general anisotropic multilayer structure,” Applied Optics, vol. 35, no. 30, pp. 5870–5879, 1996. View at Scopus
  13. E. E. Kriezis, P. K. Pandelakis, and A. G. Papagiannakis, “Diffraction of a Gaussian beam from a periodic planar screen,” Journal of the Optical Society of America A, vol. 11, no. 2, pp. 630–636, 1994. View at Scopus
  14. J. Yang, L.-W. Li, K. Yasumoto, and C. H. Liang, “Two-dimensional scattering of a gaussian beam by a periodic array of circular cylinders,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 2, pp. 280–285, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. P. H. Bolivar, M. Brucherseifer, J. G. Rivas et al., “Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 1062–1066, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Alù, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Optics Express, vol. 14, no. 4, pp. 1557–1567, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. B. García-Cámara, F. Moreno, F. González, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic propertie,” Journal of the Optical Society of America A, vol. 25, no. 2, pp. 327–334, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. P.-Y. Chen, M. Farhat, and A. Alù, “Bistable and self-tunable negative-index metamaterial at optical frequencies,” Physical Review Letters, vol. 106, no. 10, Article ID 105503, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Physical Review Letters, vol. 97, no. 15, Article ID 157403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Physical Review B, vol. 75, no. 15, Article ID 155410, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, “Analysis of directive radiation from a line source in a metamaterial slab with low permittivity,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 3, pp. 1017–1030, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. C. A. Valagiannopoulos, “Effect of cylindrical scatterer with arbitrary curvature on the features of a metamaterial slab antenna,” Progress in Electromagnetics Research, vol. 71, pp. 59–83, 2007. View at Publisher · View at Google Scholar · View at Scopus