About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2012 (2012), Article ID 595646, 6 pages
http://dx.doi.org/10.1155/2012/595646
Research Article

Optical Manipulation with Plasmonic Beam Shaping Antenna Structures

1Center for Integrated Nanotechnologies (CINT), Sandia National Laboratories, Albuquerque, NM 87185, USA
2Sandia National Laboratories, Albuquerque, NM 87185, USA

Received 6 June 2012; Accepted 16 July 2012

Academic Editor: Alexandra E. Boltasseva

Copyright © 2012 Young Chul Jun and Igal Brener. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Optics Letters, vol. 11, no. 5, pp. 288–290, 1986. View at Scopus
  2. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 841–856, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. K. C. Neuman and S. M. Block, “Optical trapping,” Review of Scientific Instruments, vol. 75, no. 9, pp. 2787–2809, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. D. G. Grier, “A revolution in optical manipulation,” Nature, vol. 424, no. 6950, pp. 810–816, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nature Photonics, vol. 5, no. 6, pp. 335–342, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Padgett and R. Bowman, “Tweezers with a twist,” Nature Photonics, vol. 5, no. 6, pp. 343–348, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nature Photonics, vol. 5, no. 6, pp. 349–356, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Novotny and B. Hecht, Principles of Nano-Optics, chapter 13, Cambridge University Press, 2006.
  9. X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Letters, vol. 11, no. 2, pp. 321–328, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Quidant, D. Petrov, and G. Badenes, “Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field,” Optics Letters, vol. 30, no. 9, pp. 1009–1011, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Novotny, R. X. Bian, and X. Sunney Xie, “Theory of Nanometric optical tweezers,” Physical Review Letters, vol. 79, no. 4, pp. 645–648, 1997. View at Scopus
  12. L. Verslegers, P. B. Catrysse, Z. Yu, W. Shin, Z. Ruan, and S. Fan, “Phase front design with metallic pillar arrays,” Optics Letters, vol. 35, no. 6, pp. 844–846, 2010. View at Scopus
  13. N. Yu and F. Capasso, “Wavefront engineering for mid-infrared and terahertz quantum cascade lasers,” Journal of the Optical Society of America B, vol. 27, no. 11, pp. B18–B35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. H. J. Lezec, A. Degiron, E. Devaux et al., “Beaming light from a subwavelength aperture,” Science, vol. 297, no. 5582, pp. 820–822, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings,” Applied Physics Letters, vol. 90, no. 5, Article ID 051113, 4 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nature Communications, vol. 2, no. 1, Article ID 283, 2011. View at Scopus
  17. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Applied Physics Letters, vol. 85, no. 4, pp. 642–644, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Verslegers, P. B. Catrysse, Z. Yu et al., “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Letters, vol. 9, no. 1, pp. 235–238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Gao, J. K. Hyun, M. H. Lee, J. C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Letters, vol. 10, no. 10, pp. 4111–4116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Physical Review Letters, vol. 101, no. 4, Article ID 043902, 4 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Optics Letters, vol. 36, no. 13, pp. 2498–2500, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Yu, P. Genevet, M. A. Kats et al., “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science, vol. 334, no. 6054, pp. 333–337, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Yu, J. Fan, Q. J. Wang et al., “Small-divergence semiconductor lasers by plasmonic collimation,” Nature Photonics, vol. 2, no. 9, pp. 564–570, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Kang, H. E. Joe, J. Kim, Y. Jeong, B. K. Min, and K. Oh, “Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation,” Applied Physics Letters, vol. 98, no. 24, Article ID 241103, 3 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. L. B. Yu, D. Z. Lin, Y. C. Chen et al., “Physical origin of directional beaming emitted from a subwavelength slit,” Physical Review B, vol. 71, no. 4, Article ID 041405, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Physical Review Letters, vol. 90, no. 21, Article ID 213901, 4 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. Lumerical solutions, http://www.lumerical.com/.
  28. J. D. Jackson, Classical Electrodynamics, Wiley, 3rd edition, 1998.
  29. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature, vol. 419, no. 6903, pp. 145–147, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. J. P. Tetienne, R. Blanchard, N. Yu et al., “Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators,” New Journal of Physics, vol. 13, Article ID 053057, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nature Photonics, vol. 2, no. 11, pp. 675–678, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Optics Letters, vol. 17, no. 11, pp. 772–774, 1992.
  33. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Optics Letters, vol. 21, no. 21, pp. 1768–1770, 1996. View at Scopus
  34. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature, vol. 457, no. 7225, pp. 71–75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab on a Chip, vol. 11, no. 6, pp. 995–1009, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam manipulating by metallic nano-optic lens containing nonlinear media,” Optics Express, vol. 15, no. 15, pp. 9541–9546, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. E. Çetin, K. Güven, and Ö. E. Müstecaplıoğlu, “Active control of focal length and beam deflection in a metallic nanoslit array lens with multiple sources,” Optics Letters, vol. 35, no. 12, pp. 1980–1982, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science, vol. 335, no. 6067, article 427, 427. View at Publisher · View at Google Scholar · View at Scopus