About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2012 (2012), Article ID 782864, 10 pages
http://dx.doi.org/10.1155/2012/782864
Review Article

Rolled-Up Metamaterials

Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg, Jungiusstrasse 11, 20355 Hamburg, Germany

Received 18 August 2012; Accepted 25 September 2012

Academic Editor: Ivan D. Rukhlenko

Copyright © 2012 Stephan Schwaiger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. O. Moser and C. Rockstuhl, “3D THz metamaterials from micro/nanomanufacturing,” Laser and Photonics Reviews, vol. 6, no. 2, pp. 219–244, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photonics, vol. 5, article 523, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075–2084, 1999. View at Scopus
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, no. 5514, pp. 77–79, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell's law,” Physical Review Letters, vol. 90, no. 13, Article ID 137401, 4 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Schurig, J. J. Mock, B. J. Justice et al., “Metamaterial electromagnetic cloak at microwave frequencies,” Science, vol. 314, no. 5801, pp. 977–980, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nature Materials, vol. 7, no. 1, pp. 31–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Valentine, S. Zhang, T. Zentgraf et al., “Three-dimensional optical metamaterial with a negative refractive index,” Nature, vol. 455, no. 7211, pp. 376–379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Rho, Z. Ye, Y. Xiong et al., “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nature Communications, vol. 1, no. 9, article 143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science, vol. 315, no. 5819, p. 1686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. K. Gansel, M. Thiel, M. S. Rill et al., “Gold helix photonic metamaterial as broadband circular polarizer,” Science, vol. 325, no. 5947, pp. 1513–1515, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Yao, Z. Liu, Y. Liu et al., “Optical negative refraction in bulk metamaterials of nanowires,” Science, vol. 321, no. 5891, p. 930, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Gibbons, J. J. Baumberg, C. L. Bower, M. Kolle, and U. Steiner, “Scalable cylindrical metallodielectric metamaterials,” Advanced Materials, vol. 21, no. 38-39, pp. 3933–3936, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Ya Prinz, V. A. Seleznev, and A. K. Gutakovsky, “Self-formed InGaAs/GaAs Nanotubes: Concept, Fabrication, Properties,” in Proceedings of the 25th International Conference on the Physics of Semiconductors, Jerusalem, Israel, 1998.
  15. V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky et al., “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Physica E, vol. 6, no. 1, pp. 828–831, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. S. V. Golod, V. Y. Prinz, V. I. Mashanov, and A. K. Gutakovsky, “Fabrication of conducting GeSi/Si micro- and nanotubes and helical microcoils,” Semiconductor Science and Technology, vol. 16, no. 3, pp. 181–185, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. O. Schumacher, S. Mendach, H. Welsch, A. Schramm, C. Heyn, and W. Hansen, “Lithographically defined metal-semiconductor-hybrid nanoscrolls,” Applied Physics Letters, vol. 86, no. 14, Article ID 143109, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Deneke, W. Sigle, U. Eigenthaler, P. A. Van Aken, G. Schütz, and O. G. Schmidt, “Interfaces in semiconductor/metal radial superlattices,” Applied Physics Letters, vol. 90, no. 26, Article ID 263107, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Mei, G. Huang, A. A. Solovev et al., “Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers,” Advanced Materials, vol. 20, no. 21, pp. 4085–4090, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Balhorn, S. Mansfeld, A. Krohn et al., “Spin-wave interference in three-dimensional rolled-up ferromagnetic microtubes,” Physical Review Letters, vol. 104, no. 3, Article ID 037205, 4 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. F. M. Huang, J. K. Sinha, N. Gibbons, P. N. Bartlett, and J. J. Baumberg, “Direct assembly of three-dimensional mesh plasmonic rolls,” Applied Physics Letters, vol. 100, no. 19, Article ID 193107, 4 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. O. G. Schmidt and K. Eberl, “Thin solid films roll up into nanotubes,” Nature, vol. 410, article 168, 2001.
  23. E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Letters, vol. 10, no. 1, pp. 1–5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. E. J. Smith, Z. Liu, Y. F. Mei, and O. G. Schmidt, “System investigation of a rolled-up metamaterial optical hyperlens structure,” Applied Physics Letters, vol. 95, no. 8, Article ID 083104, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. E. J. Smith, Z. Liu, Y. F. Mei, and O. G. Schmidt, “Erratum: “System investigation of a rolled-up metamaterial optical hyperlens structure” [ Appl. Phys. Lett. 95, 083104 (2009) ],” Applied Physics Letters, vol. 96, no. 1, Article ID 019902, 2 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Schwaiger, M. Bröll, A. Krohn et al., “Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime,” Physical Review Letters, vol. 102, no. 16, Article ID 163903, 4 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Schwaiger, A. Rottler, M. Bröll et al., “Broadband operation of rolled-up hyperlenses,” Physical Review B, vol. 85, no. 23, Article ID 235309, 9 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Kerbst, S. Schwaiger, A. Rottler et al., “Enhanced transmission in rolled-up hyperlenses utilizing Fabry-Pérot resonances,” Applied Physics Letters, vol. 99, no. 19, Article ID 191905, 3 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Rottler, M. Harland, M. Bröll et al., “Rolled-up nanotechnology for the fabrication of three-dimensional fishnet-type GaAs-metal metamaterials with negative refractive index at near-infrared frequencies,” Applied Physics Letters, vol. 100, no. 15, Article ID 151104, 4 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Schwaiger, M. Klingbeil, J. Kerbst et al., “Gain in three-dimensional metamaterials utilizing semiconductor quantum structures,” Physical Review B, vol. 84, no. 15, Article ID 155325, 5 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Schwaiger, A. Koitmäe, L. S. Fohrmann et al., “Fano resonances in optically active rolled-up three dimensional metamaterials,” unpublished.
  32. A. Rottler, S. Schwaiger, A. Koitmäe, D. Heitmann, and S. Mendach, “Transmission enhancement in three-dimensional rolled-up plasmonic metamaterials containing optically active quantum wells,” Journal of the Optical Society of America B, vol. 28, no. 10, pp. 2402–2407, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Rottler, M. Bröll, N. Gerken, D. Heitmann, and S. Mendach, “Terahertz metamaterials based on arrays of rolled-up gold/(In)GaAs tubes,” Optics Letters, vol. 36, no. 24, pp. 4797–4799, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. I. V. Semchenko, S. A. Khakhomov, E. V. Naumova, V. Y. Prinz, S. V. Golod, and V. V. Kubarev, “Study of the properties of artificial anisotropic structures with high chirality,” Crystallography Reports, vol. 56, no. 3, pp. 366–373, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Physical Review B, vol. 74, no. 11, Article ID 115116, 8 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Physical Review B, vol. 67, no. 20, Article ID 201101, 4 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Applied Physics Letters, vol. 82, no. 10, pp. 1506–1508, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Optics Express, vol. 14, no. 18, pp. 8247–8256, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Physical Review E, vol. 71, no. 3, Article ID 036617, 11 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. M. A. Noginov, H. Li, Y. A. Barnakov et al., “Controlling spontaneous emission with metamaterials,” Optics Letters, vol. 35, no. 11, pp. 1863–1865, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Applied Physics Letters, vol. 99, no. 15, Article ID 151115, 3 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science, vol. 336, no. 6078, pp. 205–209, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Xiao, V. P. Drachev, A. V. Kildishev et al., “Loss-free and active optical negative-index metamaterials,” Nature, vol. 466, no. 7307, pp. 735–738, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Optics Express, vol. 17, no. 10, pp. 8548–8551, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Physical Review Letters, vol. 105, no. 22, Article ID 227403, 4 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. N. Meinzer, M. Ruther, S. Linden et al., “Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain,” Optics Express, vol. 18, no. 23, pp. 24140–24151, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Meinzer, M. König, M. Ruther et al., “Distance-dependence of the coupling between split-ring resonators and single-quantum-well gain,” Applied Physics Letters, vol. 99, no. 11, Article ID 111104, 3 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Physical Review Letters, vol. 90, no. 2, Article ID 027402, 4 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nature Communications, vol. 3, article 870, 2012. View at Publisher · View at Google Scholar