About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2012 (2012), Article ID 839747, 17 pages
http://dx.doi.org/10.1155/2012/839747
Review Article

Nanocouplers for Infrared and Visible Light

DTU Fotonik, Technical University of Denmark, Oersteds Plads 343, 2800 Kongens Lyngby, Denmark

Received 14 June 2012; Accepted 6 September 2012

Academic Editor: Pavel A. Belov

Copyright © 2012 A. Andryieuski and A. V. Lavrinenko. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. B. Miller, “Optical interconnects to electronic chips,” Applied Optics, vol. 49, no. 25, pp. F59–F70, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Kawata, M. Ohtsu, and M. Irie, Nano-Optics, vol. 84, Springer, 2002.
  3. S. A. Maie, Plasmonics: Fundamentals and Applications, Springer, 2007.
  4. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits, Pan Stanford, 2008.
  5. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” Journal of the Optical Society of America A, vol. 21, no. 12, pp. 2442–2446, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” Journal of Lightwave Technology, vol. 23, no. 1, pp. 413–422, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Optics Express, vol. 14, no. 20, pp. 9467–9476, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Physical Review Letters, vol. 95, no. 4, Article ID 046802, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Physical Review Letters, vol. 100, no. 2, Article ID 023901, 4 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Optics Express, vol. 13, no. 17, pp. 6645–6650, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” Journal of Lightwave Technology, vol. 25, no. 9, pp. 2511–2521, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Applied Physics Letters, vol. 81, no. 9, Article ID 1714, 3 pages, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics, vol. 131, Springer, 2007.
  14. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Optics Express, vol. 19, no. 22, pp. 22029–22106, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics, vol. 4, no. 2, pp. 83–91, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Optics Letters, vol. 19, no. 11, pp. 780–782, 1994. View at Scopus
  17. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nature Photonics, vol. 3, no. 3, pp. 144–147, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Optics Express, vol. 12, no. 10, pp. 2258–2263, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Sumetsky, “How thin can a microfiber be and still guide light?” Optics Letters, vol. 31, no. 7, pp. 870–872, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Zimmermann, “State of the art and trends in silicon photonics packaging,” 2011, http://www.siliconphotonics.eu/workshop230511_slides.html.
  21. Q. V. Tran, S. Combrí, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Applied Physics Letters, vol. 95, no. 6, Article ID 061105, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Gregersen, T. R. Nielsen, J. Claudon, J. M. Gérard, and J. Mørk, “Controlling the emission profile of a nanowire with a conical taper,” Optics Letters, vol. 33, no. 15, pp. 1693–1695, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Claudon, J. Bleuse, N. S. Malik et al., “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nature Photonics, vol. 4, no. 3, pp. 174–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. V. M. N. Passaro and M. la Notte, “Optimizing SOI slot waveguide fabrication tolerances and strip-slot coupling for very efficient optical sensing,” Sensors, vol. 12, no. 3, pp. 2436–2455, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Zhang, J. Zhang, S. Chen et al., “CMOS-compatible fabrication of silicon-based sub-100-nm slot waveguide with efficient channel-slot coupler,” IEEE Photonics Technology Letters, vol. 24, no. 1, pp. 10–12, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. N. M. Arslanov and S. A. Moiseev, “Ultrahigh interference spatial compression of light inside the subwavelength aperture of a near-field optical probe,” Journal of the Optical Society of America A, vol. 24, no. 3, pp. 831–838, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Optics Express, vol. 16, no. 23, pp. 18576–18589, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Liu, R. Mendis, and D. M. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Applied Physics Letters, vol. 98, no. 23, Article ID 231113, 3 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, and P. U. Jepsen, “Non-invasive terahertz field imaging inside parallel plate waveguides,” Applied Physics Letters, vol. 99, no. 7, Article ID 071113, 3 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, and P. U. Jepsen, “Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide,” Optics Express, vol. 20, no. 8, pp. 8344–8355, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Applied Physics Letters, vol. 89, no. 4, Article ID 041111, 3 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. I.-Y. Park, S. Kim, J. Choi et al., “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nature Photonics, vol. 5, no. 11, pp. 677–681, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Letters, vol. 9, no. 10, pp. 3447–3452, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Renna, D. Cox, and G. Brambilla, “Efficient sub-wavelength light confinement using surface plasmon polaritons in tapered fibers,” Optics Express, vol. 17, no. 9, pp. 7658–7663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Optics Express, vol. 17, no. 9, pp. 7519–7524, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Physical Review Letters, vol. 93, no. 13, Article ID 137404, 4 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Physical Review Letters, vol. 97, no. 17, Article ID 176805, 4 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Physical Review Letters, vol. 102, no. 20, Article ID 203904, 4 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. X. L. Zhou, Y. Q. Fu, S. Y. Wang, A. J. Peng, and Z. H. Cai, “Funnel-shaped arrays of metal nano-cylinders for nano-focusing,” Chinese Physics Letters, vol. 25, no. 9, pp. 3296–3299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. A. A. Govyadinov and V. A. Podolskiy, “Metamaterial photonic funnels for subdiffraction light compression and propagation,” Physical Review B, vol. 73, no. 15, Article ID 155108, 5 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Three-dimensional metamaterial nanotips,” Physical Review B, vol. 81, no. 7, Article ID 075317, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Rockstuhl, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Metamaterial nanotips,” Applied Physics Letters, vol. 94, no. 11, Article ID 113110, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Dong, H. Ding, Y. Liu, and X. Qi, “Investigation of evanescent coupling between tapered fiber and a multimode slab waveguide,” Applied Optics, vol. 51, no. 10, pp. C152–C157, 2012.
  44. R. Yan, P. Pausauskie, J. Huang, and P. Yang, “Direct photonic—plasmonic coupling and routing in single nanowires,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 50, pp. 21045–21050, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. Q. Li and M. Qiu, “Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide,” Optics Express, vol. 18, no. 15, pp. 15531–15543, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. Q. Li, Y. Song, G. Zhou, Y. Su, and M. Qiu, “Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss,” Optics Letters, vol. 35, no. 19, pp. 3153–3155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Delacour, S. Blaize, P. Grosse et al., “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Letters, vol. 10, no. 8, pp. 2922–2926, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Wan, F. Liu, Y. Huang et al., “Excitation of short range surface plasmon polariton mode based on integrated hybrid coupler,” Applied Physics Letters, vol. 97, no. 14, Article ID 141105, 3 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. Q. Li, S. Wang, Y. Chen, M. Yan, L. Tong, and M. Qiu, “Experimental demonstration of plasmon propagation, coupling, and splitting in silver nanowire at 1550-nm wavelength,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 17, no. 4, pp. 1107–1111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nature Nanotechnology, vol. 3, no. 11, pp. 660–665, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Optics Letters, vol. 34, no. 10, pp. 1498–1500, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and A. Dereux, “Fiber-coupled dielectric-loaded plasmonic waveguides,” Optics Express, vol. 18, no. 5, pp. 5314–5319, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Applied Physics Letters, vol. 95, no. 1, Article ID 013504, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Y. Lee, J. Park, M. Kang, and B. Lee, “Highly efficient plasmonic interconnector based on the asymmetric junction between metal-dielectric-metal and dielectric slab waveguides,” Optics Express, vol. 19, no. 10, pp. 9562–9574, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Optics Express, vol. 18, no. 12, pp. 13173–13179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. X. W. Chen, V. Sandoghdar, and M. Agio, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field,” Optics Express, vol. 18, no. 10, pp. 10878–10887, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. X. W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Letters, vol. 9, no. 11, pp. 3756–3761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Letters, vol. 10, no. 12, pp. 4851–4857, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. Z. Han, A. Y. Elezzabi, and Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Optics Letters, vol. 35, no. 4, pp. 502–504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. D. L. MacFarlane, M. P. Christensen, K. Liu et al., “Four-port nanophotonic frustrated total internal reflection coupler,” IEEE Photonics Technology Letters, vol. 24, no. 1, pp. 58–60, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Optics Express, vol. 15, no. 11, pp. 6762–6767, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Liu, H. Zhao, Y. Zhang, and S. Liu, “Resonant cavity based antireflection structures for surface plasmon waveguides,” Applied Physics B, vol. 98, no. 4, pp. 797–802, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. Ş. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Physical Review B, vol. 79, no. 3, Article ID 035120, 17 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Optics Express, vol. 18, no. 6, pp. 6191–6204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics, vol. 10, Pergamon Pr, 1975.
  66. D. R. Beltrami, J. D. Love, A. Durandet et al., “Planar graded-index (GRIN) PECVD lens,” Electronics Letters, vol. 32, no. 6, pp. 549–550, 1996. View at Scopus
  67. T. H. Loh, Q. Wang, J. Zhu et al., “Ultra-compact multilayer Si/SiO2 GRIN lens mode-size converter for coupling single-mode fiber to Si-wire waveguide,” Optics Express, vol. 18, no. 21, pp. 21519–21533, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. “OZ Optics Ltd,” http://ozoptics.com.
  69. M. D. Feit and J. A. Fleck, “Light propagation in graded-index optical fibers,” Applied Optics, vol. 17, no. 24, pp. 3990–3998, 1978. View at Scopus
  70. J. M. Nowosielski, R. Buczynski, F. Hudelist, A. J. Waddie, and M. R. Taghizadeh, “Nanostructured GRIN microlenses for Gaussian beam focusing,” Optics Communications, vol. 283, no. 9, pp. 1938–1944, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. Fu and X. Zhou, “Plasmonic lenses: a review,” Plasmonics, vol. 5, no. 3, pp. 287–310, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. H. J. Lezec, A. Degiron, E. Devaux et al., “Beaming light from a subwavelength aperture,” Science, vol. 297, no. 5582, pp. 820–822, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. A. G. Curto, A. Manjavacas, and F. J. G. De Abajo, “Near-field focusing with optical phase antennas,” Optics Express, vol. 17, no. 20, pp. 17801–17811, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. D. R. Jackson, J. Chen, R. Qiang, F. Capolino, and A. A. Oliner, “The role of leaky plasmon waves in the directive beaming of light through a subwavelength aperture,” Optics Express, vol. 16, no. 26, pp. 21271–21281, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Martín-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Physical Review Letters, vol. 90, no. 16, Article ID 167401, 4 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. Y. Fu, C. Du, W. Zhou, and L. E. N. Lim, “Nanopinholes-based optical superlens,” Research Letters in Physics, vol. 2008, Article ID 148505, 5 pages, 2008. View at Publisher · View at Google Scholar
  77. M. Consonni, J. Hazart, G. Ĺrondel, and A. Vial, “Nanometer scale light focusing with high cavity-enhanced output,” Journal of Applied Physics, vol. 105, no. 8, Article ID 084308, 6 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Wang and W. Zhou, “Experimental investigation of focusing of gold planar plasmonic lenses,” Plasmonics, vol. 5, no. 4, pp. 325–329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics Uspekhi, vol. 10, no. 4, pp. 509–514, 1968.
  80. J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, vol. 85, no. 18, pp. 3966–3969, 2000. View at Publisher · View at Google Scholar · View at Scopus
  81. N. H. Shen, S. Foteinopoulou, M. Kafesaki et al., “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Physical Review B, vol. 80, no. 11, Article ID 115123, 9 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Physics Reports, vol. 444, no. 3–6, pp. 101–202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, Springer, 2009.
  84. A. Degiron, D. R. Smith, J. J. Mock, B. J. Justice, and J. Gollub, “Negative index and indefinite media waveguide couplers,” Applied Physics A, vol. 87, no. 2, pp. 321–328, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Andryieuski, C. Menzel, C. Rockstuhl, R. Malureanu, F. Lederer, and A. Lavrinenko, “Homogenization of resonant chiral metamaterials,” Physical Review B, vol. 82, no. 23, Article ID 235107, 7 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Andryieuski, C. Menzel, C. Rockstuhl, R. Malureanu, and A. V. Lavrinenko, “The split cube in a cage: bulk negative-index material for infrared applications,” Journal of Optics A, vol. 11, no. 11, Article ID 114010, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. A. K. Iyer and G. V. Eleftheriades, “A three-dimensional isotropic transmission-line metamaterial topology for free-space excitation,” Applied Physics Letters, vol. 92, no. 26, Article ID 261106, 3 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach, Wiley-IEEE Press, 2006.
  89. T. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Physical Review B, vol. 71, no. 12, Article ID 121103, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” Journal of Physics Condensed Matter, vol. 17, no. 25, pp. 3717–3734, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microwave and Optical Technology Letters, vol. 48, no. 12, pp. 2553–2556, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. A. G. Kussow, A. Akyurtlu, and N. Angkawisittpan, “Optically isotropic negative index of refraction metamaterial,” Physica Status Solidi (B), vol. 245, no. 5, pp. 992–997, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Alù and N. Engheta, “Three-dimensional nanotransmission lines at optical frequencies: a recipe for broadband negative-refraction optical metamaterials,” Physical Review B, vol. 75, no. 2, Article ID 024304, 20 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. C. Menzel, C. Rockstuhl, R. Iliew et al., “High symmetry versus optical isotropy of a negative-index metamaterial,” Physical Review B, vol. 81, no. 19, Article ID 195123, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. Sivan, S. Xiao, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Frequency-domain simulations of a negativeindex material with embedded gain,” Optics Express, vol. 17, no. 26, pp. 24060–24074, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. A. N. Lagarkov, V. N. Kisel, and A. K. Sarychev, “Loss and gain in metamaterials,” Journal of the Optical Society of America B, vol. 27, no. 4, pp. 648–659, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. A. Fang, T. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Physical Review B, vol. 79, no. 24, Article ID 241104, 4 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science, vol. 331, no. 6015, pp. 290–291, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser and Photonics Reviews, vol. 4, no. 6, pp. 795–808, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. X.-X. Liu and A. Alù, “Limitations and potentials of metamaterial lenses,” Journal of Nanophotonics, vol. 5, no. 1, Article ID 053509, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Physical Review B, vol. 62, no. 16, pp. 10696–10705, 2000. View at Publisher · View at Google Scholar · View at Scopus
  102. P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Physical Review B, vol. 71, no. 19, Article ID 193105, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. W. Šmigaj, B. Gralak, R. Pierre, and G. Tayeb, “Antireflection gratings for a photonic-crystal flat lens,” Optics Letters, vol. 34, no. 22, pp. 3532–3534, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. B. D. F. Casse, W. T. Lu, R. K. Banyal et al., “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Optics Letters, vol. 34, no. 13, pp. 1994–1996, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, “Defect assisted subwavelength resolution in III-V semiconductor photonic crystal flat lenses with n=1,” Optics Communications, vol. 283, no. 6, pp. 1169–1173, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Physical Review Letters, vol. 90, no. 7, Article ID 077405, 4 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  107. D. R. Smith, P. Kolinko, and D. Schurig, “Negative refraction in indefinite media,” Journal of the Optical Society of America B, vol. 21, no. 5, pp. 1032–1043, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Semiclassical theory of the hyperlens,” Journal of the Optical Society of America A, vol. 24, no. 10, pp. A52–A59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength imaging at infrared frequencies using an array of metallic nanorods,” Physical Review B, vol. 75, no. 3, Article ID 035108, 12 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Applied Physics Letters, vol. 89, no. 26, Article ID 261102, 3 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. P. A. Belov, P. Ikonen, C. R. Simovski, Y. Hao, and S. A. Tretyakov, “Magnification of subwavelength field distributions using a tapered array of wires operating in the canalization regime,” in Proceedings of the IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting (APSURSI '08), pp. 8–11, July 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. Y. Zhao, P. Belov, and Y. Hao, “Subwavelength internal imaging by means of a wire medium,” Journal of Optics A, vol. 11, no. 7, Article ID 075101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using an array of parallel conducting wires as a lens,” Physical Review B, vol. 73, no. 3, Article ID 033108, 4 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Physical Review B, vol. 79, no. 24, Article ID 245127, 7 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nature Photonics, vol. 2, no. 7, pp. 438–442, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. J. Yao, K. T. Tsai, Y. Wang et al., “Imaging visible light using anisotropic metamaterial slab lens,” Optics Express, vol. 17, no. 25, pp. 22380–22385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Applied Physics Letters, vol. 96, no. 2, Article ID 023114, 3 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Optics Express, vol. 14, no. 18, pp. 8247–8256, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. C. Jeppesen, R. B. Nielsen, A. Boltasseva, S. Xiao, N. A. Mortensen, and A. Kristensen, “Thin film Ag superlens towards lab-on-a-chip integration,” Optics Express, vol. 17, no. 25, pp. 22543–22552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. Y. Xiong, Z. Liu, and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm,” Applied Physics Letters, vol. 94, no. 20, Article ID 203108, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. Q. Meng, X. Zhang, L. Cheng et al., “Deep subwavelength focusing of light by a trumpet hyperlens,” Journal of Optics, vol. 13, no. 7, Article ID 075102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. J. Kerbst, S. Schwaiger, A. Rottler et al., “Enhanced transmission in rolled-up hyperlenses utilizing Fabry-Pérot resonances,” Applied Physics Letters, vol. 99, no. 19, Article ID 191905, 3 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  123. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Advances in Optics and Photonics, vol. 1, no. 2, pp. 438–483, 2009.
  124. C. A. Balanis, Antenna Theory, Wiley, New York, NY, USA, 1997.
  125. J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Optics Express, vol. 17, no. 8, pp. 5925–5932, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. J. S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Letters, vol. 9, no. 5, pp. 1897–1902, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. Z. Fang, Y. Lu, L. Fan, C. Lin, and X. Zhu, “Surface plasmon polariton enhancement in silver nanowire-nanoantenna structure,” Plasmonics, vol. 5, no. 1, pp. 57–62, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, “Plasmonic coupling of bow tie antennas with Ag nanowire,” Nano Letters, vol. 11, no. 4, pp. 1676–1680, 2011. View at Publisher · View at Google Scholar · View at Scopus
  129. J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, “Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas,” Applied Physics Letters, vol. 98, no. 10, Article ID 101109, 3 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  130. A. Andryieuski, R. Malureanu, G. Biagi, T. Holmgaard, and A. Lavrinenko, “Compact dipole nanoantenna coupler to plasmonic slot waveguide,” Optics Letters, vol. 37, no. 6, pp. 1124–1126, 2012. View at Publisher · View at Google Scholar · View at Scopus
  131. A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Physical Review Letters, vol. 104, no. 21, Article ID 213902, 4 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. Z. Xiao, F. Luan, T.-Y. Liow, J. Zhang, and P. Shum, “Design for broadband high-efficiency grating couplers,” Optics Letters, vol. 37, no. 4, pp. 530–532, 2012. View at Publisher · View at Google Scholar · View at Scopus
  133. D. Vermeulen, S. Selvaraja, P. Verheyen et al., “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-on-Insulator platform,” Optics Express, vol. 18, no. 17, pp. 18278–18283, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. L. Zhu, V. Karagodsky, and C. Chang-Hasnain, “Novel high efficiency vertical to in-plane optical coupler,” in High Contrast Metastructures, vol. 8270 of Proceedings of SPIE, San Francisco, Calif, USA, 2012. View at Publisher · View at Google Scholar · View at Scopus
  135. Z. Cheng, X. Chen, C. Y. Wong et al., “Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide,” Optics Letters, vol. 37, no. 7, pp. 1217–1219, 2012. View at Publisher · View at Google Scholar · View at Scopus
  136. J. Andkjær, S. Nishiwaki, T. Nomura, and O. Sigmund, “Topology optimization of grating couplers for the efficient excitation of surface plasmons,” Journal of the Optical Society of America B, vol. 27, no. 9, pp. 1828–1832, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. M. W. Maqsood, R. Mehfuz, and K. J. Chau, “High-throughput diffraction-assisted surface-plasmon-polariton coupling by a super-wavelength slit,” Optics Express, vol. 18, no. 21, pp. 21669–21677, 2010. View at Publisher · View at Google Scholar · View at Scopus
  138. E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Optics Express, vol. 16, no. 1, pp. 45–57, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Optics Letters, vol. 36, no. 6, pp. 796–798, 2011. View at Publisher · View at Google Scholar · View at Scopus
  140. N. Talebi, M. Shahabadi, W. Khunsin, and R. Vogelgesang, “Plasmonic grating as a nonlinear converter-coupler,” Optics Express, vol. 20, no. 2, pp. 1392–1405, 2012. View at Publisher · View at Google Scholar · View at Scopus
  141. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nature Photonics, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Physical Review Letters, vol. 101, no. 4, Article ID 043901, 4 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  143. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” Journal of Applied Physics, vol. 94, no. 7, Article ID 4632, 11 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  144. R. M. Bakker, A. Boltasseva, Z. Liu et al., “Near-field excitation of nanoantenna resonance,” Optics Express, vol. 15, no. 21, pp. 13682–13688, 2007. View at Publisher · View at Google Scholar · View at Scopus
  145. L. Novotny, “Effective wavelength scaling for optical antennas,” Physical Review Letters, vol. 98, no. 26, Article ID 266802, 4 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  146. C. E. Talley, J. B. Jackson, C. Oubre et al., “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Letters, vol. 5, no. 8, pp. 1569–1574, 2005. View at Publisher · View at Google Scholar · View at Scopus
  147. J. J. Greffet, “Nanoantennas for light emission,” Science, vol. 308, no. 5728, pp. 1561–1563, 2005. View at Publisher · View at Google Scholar · View at Scopus
  148. M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nature Photonics, vol. 3, no. 5, pp. 287–291, 2009. View at Publisher · View at Google Scholar · View at Scopus
  149. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Materials, vol. 9, no. 3, pp. 193–204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. L. Novotny and N. Van Hulst, “Antennas for light,” Nature Photonics, vol. 5, no. 2, pp. 83–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  151. M. Klemm, “Novel directional nanoantennas for single-emitter sources and wireless nano-links,” International Journal of Optics, vol. 2012, Article ID 348306, 7 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  152. Q. H. Park, “Optical antennas and plasmonics,” Contemporary Physics, vol. 50, no. 2, pp. 407–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  153. E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry-Pérot resonators for surface plasmons,” Applied Physics Letters, vol. 95, no. 20, Article ID 201101, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Applied physics: resonant optical antennas,” Science, vol. 308, no. 5728, pp. 1607–1609, 2005. View at Publisher · View at Google Scholar · View at Scopus
  155. P. Biagioni and B. Hecht, “Nanoantennas for visible and infrared radiation,” Reports on Progress in Physics, vol. 57, no. 2, Article ID 024402, 2011. View at Publisher · View at Google Scholar
  156. C. Balanis, Antenna Theory: Analysis and Design, Wiley-Interscience, 3th edition, 2005.
  157. A. J. Ward and J. B. Pendry, “Refraction and geometry in Maxwell's equations,” Journal of Modern Optics, vol. 43, no. 4, pp. 773–793, 1996. View at Scopus
  158. D. M. Shyroki, “Note on transformation to general curvilinear coordinates for Maxwell's curl equations (Is the magnetic field vector axial?),” http://arxiv.org/abs/physics/0307029v2.
  159. U. Leonhardt and T. G. Philbin, “Chapter 2 transformation optics and the geometry of light,” Progress in Optics, vol. 53, pp. 69–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  160. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science, vol. 312, no. 5781, pp. 1780–1782, 2006. View at Publisher · View at Google Scholar · View at Scopus
  161. J. Zhang, Y. Luo, and N. A. Mortensen, “Transmission of electromagnetic waves through sub-wavelength channels,” Optics Express, vol. 18, no. 4, pp. 3864–3870, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics,” Optics Letters, vol. 33, no. 1, pp. 43–45, 2008. View at Publisher · View at Google Scholar · View at Scopus
  163. E. E. Narimanov and A. V. Kildishev, “Optical black hole: broadband omnidirectional light absorber,” Applied Physics Letters, vol. 95, no. 4, Article ID 041106, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  164. M. P. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods, and Applications, Springer, 2003.
  165. J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser and Photonics Reviews, vol. 5, no. 2, pp. 308–321, 2011. View at Publisher · View at Google Scholar · View at Scopus
  166. M. Pu, L. Yang, L. H. Frandsen et al., “Topology-optimized slow-light couplers for ring-shaped photonic crystal waveguide,” in Proceedings of the Conference on Optical Fiber Communication, Collocated National Fiber Optic Engineers Conference (OFC/NFOEC '10), San Diego, Calif, USA, March 2010. View at Scopus
  167. R. Salgueiro and Y. S. Kivshar, “Nonlinear couplers with tapered plasmonic waveguides,” Optics Express, vol. 20, no. 9, pp. 187–189, 2012.