About this Journal Submit a Manuscript Table of Contents
Advances in OptoElectronics
Volume 2012 (2012), Article ID 861569, 7 pages
http://dx.doi.org/10.1155/2012/861569
Research Article

Laser Writing of Multiscale Chiral Polymer Metamaterials

1Department of Chemical and Biological Engineering, University at Buffalo SUNY, Buffalo, NY 14260, USA
2Department of Electrical Engineering, University at Buffalo SUNY, Buffalo, NY 14260, USA
3Institute for Lasers, Photonics and Biophotonics, University at Buffalo SUNY, Buffalo, NY 14260, USA
4Department of Chemistry, University at Buffalo SUNY, Buffalo, NY 14260, USA

Received 1 July 2012; Revised 31 July 2012; Accepted 31 July 2012

Academic Editor: Ivan D. Rukhlenko

Copyright © 2012 E. P. Furlani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A new approach to metamaterials is presented that involves laser-based patterning of novel chiral polymer media, wherein chirality is realized at two distinct length scales, intrinsically at the molecular level and geometrically at a length scale on the order of the wavelength of the incident field. In this approach, femtosecond-pulsed laser-induced two-photon lithography (TPL) is used to pattern a photoresist-chiral polymer mixture into planar chiral shapes. Enhanced bulk chirality can be realized by tuning the wavelength-dependent chiral response at both the molecular and geometric level to ensure an overlap of their respective spectra. The approach is demonstrated via the fabrication of a metamaterial consisting of a two-dimensional array of chiral polymer-based L-structures. The fabrication process is described and modeling is performed to demonstrate the distinction between molecular and planar geometric-based chirality and the effects of the enhanced multiscale chirality on the optical response of such media. This new approach to metamaterials holds promise for the development of tunable, polymer-based optical metamaterials with low loss.